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EXECUTIVE SUMMARY 

In September 1981 RIACS conducted a two-week study of the proposed 
LIIT stat ic  data flow machine for applications of interest to S A S A  Ames and 
DARPA. S.4S.4 and RIACS scientists formed seven one- or two-person teams 
to study data flow concepts. the static data flow machine architecture. and the 
VAL language. Each team mapped its application onto the machine and coded 
it in VAL. 

The application areas were computational fluid dynamics. computational 
chemistry, galactic simulation. linear systems, queueing network models, and 
artificial intelligence. The considerat ions for mapping these applications onto 
the machine were primarily architectural: the number of individual processing 
elements (PE).  the size of the instruction memory in each PE, the speed of the 
PES, the instruction issue rate. the size of the routing network among the PES, 
and the size and speed of the array memory. The goal in mapping was to max- 
imize the number of busy PES and to minimize the traffic on the routing net- 
work. The target machine contained 256 PES and was capable of an aggregate 
rate of 1.28 GFLOPS. 

1. 

2. 

3. 

4. 

The principal findings of the study were: 

Five of the seven applications used the full power of the target machine - 
they sustained rates of 1.28 GFLOPS. The galactic simulation and mul- 
tigrid fluid flow teams found that a significantly smaller version of the 
machine (16 PES) would suffice. 

A number of machine design parameters including PE function unit 
numbers. array memory size and bandwidth, and routing network capability 
were found to be crucial for optimal machine performance. Thus, studies of 
this type can provide valuable feedback to machine architects. 
The study participants readily acquired VAL programming skills. A very 
high level programming environment is essential to make the data flow 
machine usable by most programming scientists. however. because of the 
complexity of the machine architecture. For example. tools to aid debug- 
ging and mapping VAL programs onto the architecture are required. 
We learned that application-based performance evaluation is a sound 
method of evaluating new computer architectures. even those that are not 
fully specified. During the course of the study we developed models for 
using computers to solve numerical problems and for evaluating new archi- 
tectures. We feel these models form a fundamental basis for future evalua- 
tion studies. 



PREFACE 

This report describes a study held at RIACS during September 17-28. 1984. 
The study participants were: 

George Adams. RIACS 
Eric Barszcz. S.4SA Ames Research Center 
Richard Briggs, RIACS 
Robert Brown. RIACS 
Peter Denning, RIACS 
Scott Eberhardt. XASA Ames Research Center 
Eugene Levin. RIACS 
Marshall Merriam. NASA Ames Research Center 
Harry Partridge. RIACS 
Merrell Patrick, RIACS 
Karl Rowley. SASA Ames Research Center 
Catherine Schulbach, XASA Ames Research Center 
Ken Sevcik, RIACS 

Instruction in the data flow computer architecture and programming language 
used, as well as consultation and guidance. was provided by 

Jack Dennis, MIT 
William B. Ackerman, MIT 
Gao Guang-Rong, MIT 

Although Adams, Brown, and Denning took primary responsibility for 
preparing this report, all these people contributed significantly to  the report. 
The individual team report summaries included herein were largely prepared by 
the team members. 



TABLE OF CONTENTS 

Page 
1 Introduction ..................................................................................... 1 

2 2 Background and Motivation ............................................................ 
2.1 Matching Computational Models and Problems .................. 2 
2.2 Approaches to Evaluating Machine Performance ................. 

3 Problem Solving Process .................................................................. 
3 
5 

4 Methodology .................................................................................... 
5 The MIT Static Data Flow System .................................................. 

5.1 Model of Computation .......................................................... 
5.2 The Machine ......................................................................... 
5.3 The Language ....................................................................... 
5.4 The Compiler ........................................................................ 

6 Overview of Individual Projects ....................................................... 
6.1 Computational Fluid Dynamics - 1 ...................................... 
6.2 Computational Fluid Dynamics - 2 ...................................... 
6.3 Computational Chemistry .................................................... 
6.4 Galactic Simulation .............................................................. 
6.5 Linear Systems ...................................................................... 
6.6 Artificial Intelligence: Xatural Language Processing ............ 
6.7 Queueing Network Analysis .................................................. 

7 What W e  Learned: Comments from the MIT Group ...................... 
7.1 The Machine Configuration .................................................. 
7.2 Program Debugging .............................................................. 
7.3 Array Memory ...................................................................... 
7.4 Applicability to  AI Problems ................................................ 

8 Conclusions ...................................................................................... 
8.1 Programming ........................................................................ 
8.2 Architecture .......................................................................... 

8 

11 
11 
11 
14 

15 
18 

18 

21  

23 

26 
27 

30 
33 

38 

38 

39 

39 

40 

4 1  

4 1  

42 

8.3 General ................................................................................. 44 

8.4 Further Work ....................................................................... 45 

9 References ........................................................................................ 46 

APPENDICES ............................................................................................. 49 

10 Machine Cost Estimate .................................................................. 50 

11 Questionnaire and Responses ......................................................... 5 1  



1. - Introduction 
During September 17-28, 1984, the Research Institute for Advance Com- 

puter Science (RIACS) conducted a data flow computation study. The purpose 
was to  develop an assessment of the effectiveness of data flow programming 
using a specific data flow machine architecture for computational problems in 
several disciplines of interest to the sponsors. NASA Ames and DARPA. These 
areas were: 

computational fluid dynamics 
computational chemistry 
galactic simulation 
linear systems 
artificial intelligence 
queueing network models 

Seven teams. each consisting of one or two scientists. studied data flow pro- 
gramming concepts. expressed important algorithms in the VAL programming 
language, and investigated how best to map their algorithms onto the MIT 
static data flow architecture. Three researchers from MIT (Jack Dennis, William 
Ackerman, and Gao Guang-Rong) served as teachers and consultants. RIACS 
provided the offices and computing equipment, planned and organized the 
schedule, collected the data and results, and produced this report. 

This report contains an overview of the study: what took place and what we 
learned. Included is a summary of the individual projects and their conclusions. 
The reader is advised to  read carefully and critically, and add his own conclu- 
sions to those we present. 

Because of the two-week time constraint, we were unable to  do several 
things that might have improved the evaluation of the static data flow machine. 
We were unable t.0 run complete VAL programs through the interpreter because 
the algorithms and programs used by the teams were too complicated to code to  
completion during the workshop. Because of this, we could not directly compare 
the cost and time to run the VAL versions to the FORTRAN versions run on the 
Cray X-MP. We believe these comparisons are' worthwhile; they are left for 
future study. 



2. Background and Motivation 

2.1. Matching Computational Models and Problems 
The computational needs of science and engineering have reached the limits 

of single-processor supercomputer technology. It is unlikely that by 1990 there 
will exist a single-CPU computer capable of more than 2 or 3 GFLOPS (Giga 
Floating Point Operations Per Second) but routine problems in science and 
engineering will demand computers 10 or 100 times that fast.’ See [Adam84]. 
The required computational power is attainable only with computing systems 
consisting of many machines executing simultaneously on a different parts of the 
solution. Here “many” means hundreds or thousands of machines. Such sys- 
tems are called “concurrent processing systems.” (VLSI circuit technology com- 
plements this direction in computer architecture.) 

Computer scientists have traditionally studied “models of computation,” 
ranging from the inherently sequential, as with the common program-counter 
based model, to inherently parallel, as with data flow. Each of these models may 
have one or more abstract machines that implement them and these abstract 
machines may in turn be realized by concrete machines. A popular model of 
parallel computation frequently realized by a large set of sequential machines 
communicating over a network. This adds a new level of complexity to  program- 
ming which now must explicitly consider the communication and synchronization 
among many parallel activities. 

Now: For any given class of problems there may exist several qualitatively 
different practical, parallel algorithms that solve problems from that class. Some 
of the models (hence, machines and associated languages) will be well suited for 
a given algorithm, others not. Thus, in the world of concurrent computation, it 
becomes interesting - and important - to ask, “Which combinations of 
problem-domain and models (computation and communication) are most 
effective?” The answers will be based on evaluations of two kinds: 

1. Objective assessments such as program size, running time, and cost per 
solution. These assessments can be made partly by mathematical analysis 
and partly by experiment. 

Subjective assessments of human factors such as programming time, ease of 
finding good solutions using the given architecture, understandability of 
programs, and quality of the programming environment. These assessments 
must be made by experiment. 

Evidently, a large effort would be required to systematically compare architec- 
tures among various disciplines in order to  answer the question. How to organ- 
ize such an effort is the subject of another report (Adam851. 

2. 

‘Becaure problem-time u often a polynomial (or worse) function of problem-sice, it is inevitable that computational 
needr will surpam the power of Sequential machiner. For example, if the beat algorithm for a problem taker time n’, a 
double-#peed CPU could handle a problem only about 40% (factor of A) larger in the same amount of time. 



The RIACS data flow computation study was a first attempt to answer the 
question for a specific machine (the MIT static data flow machine) and selected 
disciplines. The two specific purposes were: 

1.  To obtain a preliminary answer to  the question, “How effective is data flow 
computation, as realized in the MIT V A L  language and static data flow 
machine, at solving problems in disciplines where IL‘ASA and DARPA are 
seeking breakthroughs in computational power?” 

2. To experiment with a prototype for studies that identify the most effective 
combinations of domain and models. 

The results of this study are not a final answer to the question posed in (1) 
immediately above. The reasons include the following: 

1. Since no one has prior experience with such studies, we could only make 
educated guesses at the methodology that would allow data flow computa- 
tion to be compared across a variety of dissimilar disciplines. 

Xot all disciplines of interest to XASA and DARPA were covered because 
the release time for scientists participating in the study was difficult to 
negotiate. 

Only a handful of relatively simple algorithms for solving “kernel problems” 
of the participating disciplines could be addressed in the short time avail- 
able (two weeks). One must use caution in extrapolating the results to 
larger problems, full systems, and complete disciplines. 

2. 

3. 

2.2. Approaches to Evaluating Machine Performance 
k-els a t  which to evaluate the performance of any comput- 

ing system. They differ in their requirements on the amount of support required 
to program them and in the knowledge required to perform the evaluation. The 
four levels are as follows: 

TI....-... .._I &?---- _ _ _ _ _ _  -_- 

1. 

2. 

3. 

Raw performance evaluation. The burst performance of a machine, 
expressed in operations per second, may be computed from knowledge of the 
clock speeds, memory and register speeds, and bus speeds. This provides an 
absolute upper bound on the speed of any computation performed on a 
machine, but achieving it in any real computation is a practical impossibil- 
ity. No programs need be written to evaluate a machine at this level. 

Small function programming. Small common functions, such as matrix 
multiply or FFT, are meticulously coded, usually in machine or assembly 
language, to achieve maximum speed. The functions are run on the 
machine and tuned. The only programming support needed is a compiler or 
an assembler. 
Benchmark programming. An existing software package, such as LIN- 
PACK, or a software standard, such as Livermore Loops, is programmed for 
the machine. It is run and timed for a particular input. Programming 
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support requires compilers, linkers, and an operating system. 
4. Complete application programming. The machine is evaluated by pro- 

gramming and observing an entire and real application on it. The program- 
ming is usually best performed by experts in the domain of the application. 
An entire programming environment consisting of editors, compilers, link- 
ers. and debuggers is required. 

The first level is cheap, but crude, and gives no information about the 
machine’s programmability. The second level gives good ways of “stress-testing” 
to discover the fraction of instantaneous rate delivered to tightly-coded routines. 
The third level provides a basis for comparing the new machine to existing 
machines running the same standard software. The fourth level gives an assess- 
ment of the machine’s programmability and its applicability to  a particular 
domain. 

Our goal in this study was to shed light on the “best-match” question 
described earlier. Because this inherently includes the question about the pro- 
grammability of the machine, we were obliged to undertake the evaluation at the 
fourth level. 



3. Problem Solving Process 
Because this study focuses on the ability of a machine to support problem- 

solving in given disciplines. it is necessary to consider explicitly the process one 
uses to solve a problem computationally. The problems considered by our teams 
had been previously solved by FORTRAN programs running on DEC VAXes or 
Cray computers. Using the model for problem solving. we hoped to determine 
the best place to deviate from the previous solution path to the optimal solution 
path targeted for the MIT static data flow machine. It should be noted that this 
model is not general-purpose, but it describes the process used in the disciplines 
in our study fairly well. 

Our model says that the problem-solving process consists of a sequence of 
increasingly detailed solution representations, the transformations between them, 
and the knowledge required to  perform those transformations. The sequence of 
representations culminates in a computer program. Initially, there exists a 
(prose) problem statement. We call this stage zero. Using knowledge of his dis- 
cipline, the scientist first states a solution to  the problem using the language of 
mathematics, usually continuous mathematics. This solution may be a simple 
function or a complicated sequence of equations. We call this stage one. 

The next step is to transform the solution mathematics into an abstract 
(machine independent) algorithm. If there is no direct way to solve the problem 
using the mathematics, this is the stage at which the approach to  the numerical 
simulation is determined. This transformat ion introduces discrete approxima- 
t ions to continuous mathematics, numerical methodologies, algorithmic 
approaches, error controls. recursions, and partitions into potentially parallel 
components. The knowledge used includes those techniques, and knowledge of 
the particular model of computation implemented by the target machine, though 
not necessarily detailed architectural parameters. The language used here is a 
combination of discrete mathematics and a high-level pseudo language. We call 
this stuge two. 

The third step is to render the abstract algorithm as a program in a com- 
puter language. This transformation includes decisions about data representa- 
tions and control flow-. The knowledge needed includes the definition of the com- 
puter language used and the architectural parameters of the machine. We call 
this stuge three. 

The final step is to translate the program of stage three into a machine 
code. This step is usually performed by a compiler embodying knowledge of the 
instruction set and data representations of the machine. 

In the context of our study, the sequence of stages is depicted by Figure 1. 
When employing a new machine of different architecture and model of computa- 
tion from the current machine, it  is best to backtrack to  stage one and formulate 
a new abstract algorithm better suited to the new model of computation. If, 
however, the new machine is not based a new model of computation, as is the 
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Figure 1. Steps in Problem Solving 
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case when moving an application from one vector processor to  another, backing 
up to  stage two may be adequate. 

We observed that in our study. most participants backtracked to stage two 
as given. They reported that the abstract algorithms for their problems were 
already in a highly parallel form. though it required thought and examination 
over several days to discover this. That five of the seven teams then constructed 
codes that ran at the full speed of the machine tended to confirm their beliefs. 
However. in future studies. it would be well to  require teams to provide explicit 
arguments why a further retreat to stage one would produce no significant 
benefit. Existing algorithms for a given application that readily allow even a 
great deal of parallelism cannot be assumed prima facie to be high performance. 
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4. Methodology 
The study participants were organized into teams. Team members were 

experts in their respective disciplines and knowledgeable in the use of supercom- 
puters for the solution of problems in that discipline. The team members and 
their disciplines are given in Table 1. 

Team members were volunteers who were personally interested in the study. 
They were chosen to  constitute a cross-section of the research areas of interest to 
the sponsors. Obtaining release time for some researchers was difficult; two 
weeks was the maximum time for which most could be available. 

Table 1. Study t eams.  

Discipline Team Members  
________ ~~ 

Computational Fluid Dynamics I Scott Eberhardt 
Karl Rowley 

Computational Fluid Dynamics I1 Marshall Merriam 
~~ 

Computational Chemistry Harry Partridge 
Eugene Levin 

~~ * 
Galactic Simulation Eric Barszcz 

Cathy Schulbach 

Linear Systems Merrell Patrick 

Artificial Intelligence Rick Briggs 

Queueing Xetworks Ken Sevcik 
Peter Denning 

* 
This team comprised proxies for the original algorithm designers, who were un- 

able t o  be present personally. 
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Team selection was complete-one month prior to  the study. At that time, 
team members were given some general information on data flow that they could 
read a t  their convenience. There was no formal instruction in data flow prior to 
the study. nor had any of the participants received any. ,411 team members were. 
however. previously aware of data flow computation. 

Each team brought a working program or detailed algorithm specification 
from its application domain to the study. The study began with intensive 
instruction in data flow concepts and the programming language VAL conducted 
by the MIT contingent. Thereafter the teams sought to apply data flow metho- 
dology to  their algorithms. Each team, with assistance as needed from MIT per- 
sonnel, programmed and transformed their application for execution on a data 
flow computer. 

The first four days of the two-week study consisted of half a day of lecture 
and discussion and half a day of team study and programming. The remaining 
six days were team study and programming, with occasional reports by team 
members to the entire group. The lectures early in the workshop concentrated 
on the V.4L language and the architecture of the MIT static data flow machine 
as proposed for this study. During these early days, the participants wrote sam- 
ple programs to familiarize themselves with the VAL language and the RIACS 
computing system. We anticipated that it would take one full afternoon for par- 
ticipants to familiarize themselves with the system; it took about one hour. We 
anticipated it would take one week for them to  learn VAL; it took three days. 
The steps they carried out were: 

1. Characterize their application in terms of computational blocks and flow of 
data among blocks. (This is called “pipestructured data flow methodol- 

Select representative and critical blocks for coding in VAL. 
Design the structured data flow machine code. 

Evaluate the performance the specified static data flow computer would pro- 
vide. 

Iterate the above steps (time permitting) to obtain improved solutions. 

ogy 3 
2. 

3. 

4. 

5 .  

The participants used the RIACS computer facility to  conduct this work. 
Arrangements were made to  provide office space for exclusive use by the 

study. This also removed the participants from their daily milieu of telephone 
calls and other distractions and increased the amount and quality of time the 
participants devoted to the study. By providing emulators, we attempted to 
minimize necessary operating system interaction and to  simulate the command 
level interface of the editors familiar to the participants. In this way team 
members spent the majority of their time on data flow investigation, rather than 
on learning a new operating system and editor. 
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During the work/programming hours, the MIT researchers worked closely 
with the teams, helping them map their codes onto the data flow machine. 
Throughout the study, RIACS personnel helped with problems related to the 
facility. and collected data concerning the reaction of the team members to data 
flow and their success at using the language. 

Each team prepared a report on its work during the study. These reports 
are summarized in the following sections overviewing the team projects. The full 
reports are to be available as separate RIACS and NASA technical reports. In 
addition, we handed out a questionnaire aimed at  determining the participants’ 
reactions to data flow programming and the format of the workshop; a summary 
appears in an appendix. 

During the study. the VAL translator was used approximately 500 times. 
We captured most (62%) programs that passed through the translator (some 
were not because we assumed participants would consistently use file names of 
the form narne.ual for all VAL programs; some did not). All interpreter files, 
interpreter dialogs. and compiler error messages were captured. This allows us 
to  “replay” any captured portion of the study. Participants were not informed 
that programs were being captured so that their use of the VAL system would 
not be biased. 
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5. The MIT Static Data Flow System 
[Editors’ note: The technical specification of the MIT static data flow machine 
and VAL was provided by the MIT team]. 

The description of the data flow system has four parts: the model of compu- 
tation, the machine architecture to implement that model. the language VAL 
used to program the machine. and the optimizing compiler for VAL. 

5.1. Model of Computation 
The model of computation implemented by data flow is significantly 

different from the more familiar control flow model used in traditional Von Neu- 
mann machines. This section describes the basic concepts: for a thorough over- 
view. see [Davi82]. 

-4 data flow computation is represented as a directed graph, each node 
representing a single operation and having one or two incoming edges and a sin- 
gle outgoing edge. Conceptually, an outgoing edge may be split and become an 
incoming edge for several other nodes. Data values move as tokens on the edges 
of the graph. When a node has a token on all of its incoming edges, it becomes 
enabled to perform its computation, or “fire,” consuming the incoming tokens 
and generating a result token on the outgoing edge. Generally. firing rules 
include the condition that there be no token on the outgoing edge. 

Loops can be created by making the graph cyclic, and imposing initial con- 
ditions on some edges. Additionally, conditionals can be created by using special 
nodes with an added Boolean input. One type of conditional node passes one of 
its two inputs to its output depending on the state of the Boolean input. The 
other type of conditional node passes its sole input to  one of two output depend- 
ing on the flag. 

Large programs can be composed of smaller graphs, and parallelism can be 
achieved because of the firing rules. Since the edges on the graph represent the 
data dependencies among the operations, any node with all its inputs satisfied 
may be fired, regardless of whether other nodes around it are currently firing. 
Likewise, data may be pipelined through a data flow graph, with the initial 
nodes in the graph consuming input in streams [Gao82]. 

5.2. The Machine 
Many of the design parameters of the machine under study are not firm. 

What follows is a description of the machine as presented a t  our study by the 
MIT group and used by the participating scientists. During the course of the 
two weeks, some of the parameters changed slightly, and they may continue to 
change in the future, perhaps as a result of this study. Other designs for data 
flow computers exist, for example [Gurd85, Rumb771. 

The data flow supercomputer suggested as the target for the performance 
study consists of 256 processor elements interconnected through a routing 
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network. Each processor is capable of executing any data flow element, and gen- 
erally the whole program is partitioned and spread across all processors in a way 
that preserves locality. Cnder the best conditions, the result of an operation will 
be only needed in the same processor in which it was computed, however. if it is 
needed in another processor. it will be sent through the network. Each processor 
has a separate instruction store and array memory. 1 / 0  devices and mass 
storage are attached to the system through the network. A block diagram of the 
architecture is shown in Figure 2. 

Each processing element (PE) is designed around the Weitek 64-bit floating 
point chip set. It includes one adder chip capable of 5 to 8 MFLOPS perfor- 
mance and two multiplier chips capable of 1.25 to 2.0 MFLOPS performance 
apiece. The instruction cell memory of a PE is divided into two regions - 1024 
cells for floating point operations (primarily adds. subtracts. and multiplies), and 
1024 cells for "red tape" instructions (the integer arithmetic. buffer manipula- 
tion, tests. etc.. needed to control the floating point computation). The idea is 
that each PE should easily hold enough red tape instructions to ensure that the 
floating point chips are kept busy. 

Assuming that a floating point (FP)  operation is begun every 200 
nanoseconds, and it takes at  most 2 microseconds to completely process an 
enabled instruction (from setting its enable flag to  setting the enable flags of tar- 
get instructions), ten active FP instructions are sufficient for the PE to run at  
peak FP rate. If a pipelined section of machine code is spread over many PES, 
and the pipeline headway is 50 microseconds, then each PE will have to hold 250 
FP instructions of the pipeline to operate at  peak performance. 

There are several reasons that more than 250 FP cells should be provided: 
(1) Due to conditional computations there will be some FP cells that are not 
used on every pipeline cycle. (2) Some computations will run in several phases, 
and, to  achieve full performance, each phase separately will have to fully utilize 
every PE; hence each PE will hold code for each phase of the computation being 
performed. (3) Miscellaneous instructions will be needed for initialization, 
input/output, and for other functions peripheral to the main computation. It 
may turn out that  the total of 2048 total instruction cells is too low. 

The square root and divide operations (actually reciprocal square root and 
reciprocal, respectively) for floating point values will be supported by performing 
Kewton iterations from an initial guess obtained from a ROM. 

The routing network (RN) has an input and an output port for each of the 
256 PES and and additional set of 256 input and output ports for mass memory 
devices, display systems, and the host processor. The RN will have nine stages 
with 256 two-by-two routers in each stage, for a total of 2304 router modules. 
The links between routers have a 16-bit data path and can operate at 5 MHz or 
better. A typical result packet sent through the network consists of an 8-byte 
FP value and four bytes for target PE and instruction cell identification, etc. 
Thus a router will accept a packet in 1.2 microseconds. Because of contention, 
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Routing Network. 512 by 512, 16 bit data paths, operates at > 5MHz, 
average rate of transmitting FP packets 0.25 MHz from a single PE to 
another. 
Processing Elements. 5 to 8 MFLOPS with 1.25 to 2 MFLOP multiplies. 
256 PES in the system. 

Instruction Store. 1024 cells for FP instructions, 1024 for others. 
Array Memory. Size not fully determined. A t  least 256K 64 bit words per 
PE. 
Input /Output. Includes mass memory, host processor, display systems. 256 
ports to the RI\I are reserved for I/O. 

Figure 2. Static Data Flow Machine Architecture 

we assume that the network operates from PE to PE at  30 percent its maximum 
rate (this derating assumption may be subject to significant change once actual 
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experience is gained), yielding a communication rate of 0.25 MHz. A simulation 
study of the Delta network (topologically equivalent to  the RN) shows the need 
for derating performance (Dias811. 

The amount of array memory to be attached to each processing element is a 
matter of debate. For the study 256K words of 64 bits for each PE, making a 
total of 60M words in the machine, is assumed. The transfer rate for this 
memory is 2 MHz or better, and the latency for reading is about two 
microseconds. The desirable performance of the array memory is also controver- 
sial. 

The Array Memory is supplemented by a Disk Storage System (alterna- 
tively. a solid state mass memory) that communicates with the PES through the 
Routing Xetwork. The performance to be expected from the disk system is 
about one megabyte per second transfer rate for each disk unit of which there 
might be 32 or 64. for example. This yields a total of 4 or 8 million FP values 
read or written each second. The disk capacity available could be huge, but 
there is little hope of exchanging t h a t  excess capacity for greater transfer rates 
without expensive redesign of the disk units. 

5.3. The Language 
The MIT team has developed the language. VAL.  for the dat,a flow machine. 

This language is described in [Acke82] and documented in [Acke79]. 
The language is functional in nature and is value-oriented. It is similar to 

most modern languages in that all the common scalar data types are supported, 
as are arrays and aggregate types. The primary difference is that all data are 
treated as values, not objects. In an object-oriented programming language, 
computations take the form of operations on objects, either to extract informa- 
tion or to  change the state of an object in a controlled, well-defined way. In 
VAL, however, there are no data objects, only values. Hence, it is not possible to 
make elemental changes to arrays, for example. Instead, new arrays are made of 
old arrays by changing elements. 

Programs are constructed of functions in VAL, and each function may com- 
pute one or more values. No static storage is permitted within functions, as the 
data flow model of computation itself has no concept of static storage. 

Two control structures within VAL deserve special mention. These are for- 
iter and forall-construct. Both of these control structures define program 
loops. Program loops for iteration have four basic parts: (1) definition of initial 
values of control variables, (2) loops termination test, (3) computation per- 
formed by the loop, and (4) modification of loop control variables for next itera- 
tion. The for-iter construct in VAL makes the four parts distinct because (4) 
invariably takes the form of assignment statements to  replace the old values of 
the loop control variables with new values, a side effect that is not normally per- 
mitted in the language. This case denotes an inter-iteration dependency that 
usually cannot be computed in parallel. However, depending on the nature of 
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the computation, the compiler may try to discover potential parallelism in (3) ,  
the loop computation. 

Program loops are also used to create arrays. In this case, there often are 
no inter-it,eration dependencies, and each iteration may be computed in parallel 
with the others. For this reason. V.4L has the forall-construct, which allows 
the programmer to define the construction of one or more arrays. An example of 
the use of forall-construct is as follows: 

x. Y := 
forall I in [I, S]  

A : real := f(1) 
construct I, A 

endall 

In this case. the machine can compute all I\; values of the two arrays in parallel, 
and the results will be available as the values X and Y. 

5.4. The Compiler 
The MIT compiler for VAL generates an intermediate language and will be 

targeted for the static data flow machine. 

Optimizations and mapping decisions made by the compiler are of critical 
importance [.4cke84]. The compiler that MIT intends to construct will perform 
at least the transformations given below. Until a great deal of additional experi- 
ence is obtained. they expect that the decisions about optional or “parameteriz- 
able” transformations will not be made automatically. They will be made under 
the control of information provided by a human. This will take the form of an 
“advice file” associated with each program. Once the advice is given, the indi- 
cated transformations will be made automatically. 

Of the transformations listed below, the most important are loop unfolding, 
array interlace, streaming, and pipelining. 

Small Array and Record Removal. Small arrays (say 10 elements or 
less) are often best handled by being broken up into separate tokens containing 
the individual values. Small forall loops creating such arrays will be similarly 
expanded. For example 

A := forall I in (1, 31 construct f(1) endall ; 
will become separate subgraphs to compute f ( l ) ,  f(2), and f(3), which will be 
passed through the graph on separate edges. References to A[2], for example, 
will then become trivial. 

Records will be treated as small arrays and handled similarly. 
Array and Loop Transposition. If we have a large forall inside a small 

one, as in 

A := forall I in [l, 31 
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construct forall J in [l,  lOOOO] construct f(1, J) endall 
endall ; 

the outer forall and outer level of the array will be removed as described above, 
resulting in three separate foralls creating three separate one-dimensional arrays. 

If they are in opposite order. as in 

A := forall J in [I. lOOOO] 
construct forall I in [l. 31 construct f(1. J )  endall 
endall : 

the loops will be “transposed”, that is, their nesting will be reversed. All subse- 
quent references to  the array A will be likewise transposed, turning A[P+Q,S] 
into A[3.P+Q]. The removal of the small array and small forall can then 
proceed. This transformation is important in such things as block-tridiagonal 
matrix processing. 

Loop Unfolding. In any repetitive calculation extra parallelism among the 
cycles will be exploited by evaluating many cycles a t  once in different parts of 
the data flow graph. For example, if a loop is unfolded by a factor of 8, there 
will be 8 separate loops in the data flow graph, all running approximately in step 
with each other. The first piece will evaluate the first cycle of the original loop, 
then the 9th, then the 17th. etc. The second piece will evaluate the 2nd cycle, 
then the 10th. and so on. 

How much unfolding to perform, and how to  map the separate pieces onto 
the different processing elements of the computer are decisions that will come 
from the advice file. Often, the number of pieces will be greater than the number 
of processing elements, so each processing element will contain several pieces. 

When a loop that accesses an array sequentially is 
unfolded, it will be appropriate to  separate the array into a number of pieces, 
with each piece of the loop accessing its own private piece of the array. This 
reduces int er-processor communication and increases the effective bandwidth of 
the memory system. 

The division of the array will usually take the form of interlacing, with the 
first piece holding, in consecutive locations, A[ l ] ,  A[9), A[17]. etc, the second 
holding A(2], A(10]. A(18]. and so on. 

Streaming and Pipelining. A great many loops that manipulate arrays 
do so by performing the same computation repeatedly on each element of the 
array. When this occurs, the array is processed as a stream of scalar values 
passing through the data flow graph in sequence. Different parts of the program 
can pass arrays to  each other in this form, without storing them in memory dur- 
ing intermediate stages of the computation. 

When an array is too large to  fit in the RAM and must be stored on the 
disk, it will be transferred to  and from the data flow graph in the form of a 
stream. 

Array Interlacing. 
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Loops that process arrays as streams of tokens will be pipelined [Denn83]. 
The graph that comprises the body of the loop will have many consecutive 

waves” of tokens inside it in various stages of progress. This is the principal 
method by which the percentage of operators that are enabled is increased to 
improve utilization of the processing units. 

L L  
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6. Overview of Individual Projects 
What follows are summaries of the individual team reports prepared largely 

by the teams themselves. They have been edited as necessary to  conform to a 
common style and meet space constraints. Most of these summaries are distilled 
from full-length reports prepared for publication by the team members. The 
form of each summary follows that presented in the section on problem solving 
techniques. with the addition that some background information is given in the 
"Problem Overview." section. For reports on previous studies on mapping appli- 
cations on the MIT static data flow machine. see [Denn84a. Denn84bl. 

6.1. Computational Fluid Dynamics - 1 
Team: Scott Eberhardt FI Karl Rowley 
Problem Overview. The computation under study is the Conservative 

Supra-Characteristic Method (CSCM) for numerically solving the equations of 
fluid motion: the Savier-Stokes equations for viscous fluids, or the Euler equa- 
tions if viscosity is neglected. The author concentrated on the one-dimensional 
model. but developed strategies for programming the three dimensional model. 

Mathemat ica l  Model. The model used for this study is the time-accurate 
Euler equations. These equations describe the conservation of mass, momentum, 
and energy. For the one dimensional case, they are 

aq aF -+-=o 
at az 

where 

and 

p = (7-1)  [ E  -4 1 

The elements of the vector q are called the conservative variables and the vector 
F is the flus vector. The variables are p= density. u = velocity, e = total energy 
per unit volume, and p = pressure. 

Abs t rac t  Algori thm and Approach .  The detailed analysis and develop- 
ment of the algorithm to solve for the conservative variables in the above equa- 
tion is too complicated for inclusion in this report. The interested reader is 
referred to  [Eber85]. 

Many CFD algorithms use finite differencing, where partial derivatives are 
represented by finite differences. The domain is first broken into a discrete sys- 
tem and differences are computed between the discrete points. Most algorithms 
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for solving the Euler equations are implicit, and hence represent the solution at 
each point in the system as a function of other points in the system. Therefore, 
the solution procedure will involve the inversion of matrices which are usually 
block tridiagonal. scalar tridiagonal. scalar penradiagonal. or. occasionally. block 
bidiagonal. The block matrices result from the system of equations so that the 
one dimensional problem. with three equations. produces 3 x 3  blocks. The Euler 
equations basically represent a convection process while the Navier-Stokes equa- 
tions also include a diffusive process. The convection part of the two equation 
sets give rise to  a wave property which can be exploited in the algorithm. CSCM 
decouples the system of equations into three wave equations and combines posi- 
tive waves together in one set of equations and negative waves in another set. 
The equations are then finite-differenced in such a way as to capture the correct 
wave propagation direction. The equations are then recombined to form the 
complete system. 

The resulting algorithm used in CSCM is written as follows: 

where 

1 
A z  f =- A+ ( f j - f  j - 1 )  

When taken out of operator form, the lefthand side becomes 

or 

- A (  Aq) Aq) 3ni1+C( Aq)  In-:' 

The indices j and n represent spatial and time discretization, respectively. Each 
step of the algorithm computes a new Aqj ; this being used to compute the new 
values of the conservative variables at  each grid point j . 

The matrix A transforms the conservative into the right- and left-running 
waves. hence the existence of A + and A -. 

When extended to multiple dimensions, the dimensions are decoupled to  
look like multiple one dimensional problems. 

The Program. The overall structure of the program is shown in Figure 3. 
There are two ways in which the one-dimensional CSCM code can be imple- 

mented. The example code is small and so will not utilize the full machine in 
either implementation but the analysis will lead to  a more clear picture of the 
multi-dimensional problems which will be covered later. The first method is to 
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Figure 3. Structure of CSCM Data Flow Program. 

- resid =zag2 

pipeline the code on a single processing element (or through a few processing ele- 
ments), leaving all other processors idle. The total number of operations 
required for the multi-dimensional CSCM code is greater than the instruction 
cell memory will allow so more than one processor must be utilized for the pipe- 
line chain. There are two pipelines in the 1-D code represented by the block 
which fills the block tridiagonal elements and the block tridiagonal inversion rou- 
tine. The scientist concentrated on the filling part because a previous study 
examined the matrix inversion block. Analysis showed that the pipeline length 
for this step is 368 floating point operations. exceeding the required 250 opera- 
tions to  keep the pipe busy. Hence, the one-dimensional code can adequately 
keep one processing element busy. The other technique for solving the one- 
dimensional case is to spread the computation over all 256 processors. However, 
rarely is the one-dimensional case computed for so many grid points and the 
interprocess communication would overload the routing network. 

For the multidimensional case, the grid space is broken into “pencils,” 
where each pencil is a one-dimensional cut or line where all coordinate values 
except one stay constant. The method of approximate factorization was used to 
decouple coordinate operators into pencils. A four step process is used to obtain 
Aq . The first is to compute the right-hand side operator which is a function of 
known variables. The next three steps are to  compute the block tridiagonal ele- 
ments and invert the block tridiagonal matrices for each of the three coordinate 
directions. The relation to the one-dimensional problem results from these three 
sweeps. 

Conclusions. As this algorithm is very similar to  the one used by the MIT 
team during the early design phases of the machine, it maps well onto the static 
data flow architecture. It is estimated that a sustained performance of 1 
GFLOP is achievable. Shortcomings in the architecture include the small 
instruction storage. If the program were modified to allow each PE to process 
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an entire X-Y plane, the array memory requirements for the plane alone would 
expand to  150K words. 

6.2. Computational Fluid Dynamics - 2 
Team: Marshall Merriam 

Problem Overview. A multigrid Euler equation formulation for compu- 
tational fluid dynamics (CFD) is a simplified model of fluid flow, neglecting 
viscous effects. but one that is commonly used in the aerospace field and of great 
importance. For the data flow study a multigrid solver for Euler equations 
(FL052R) was examined to determine its performance on the proposed MIT 
static data flow computer. This code is competitive with the fastest Euler 
solvers available for the Cray X-MP and is widely used in industry. For a 
detailed report of this team's study. see [Merr85]. 

Abstract Algorithm and Approach. The program FL032R was used as 
the starting point for the study. Although it is explicit for the most part, there 
is a small implicit section to do smoothing on the residuals. The scientist 
quickly concluded that the code in its existing state was a bad match to the 
architecture. First. the code contains a subroutine which solves a number of 
scalar tridiagonals in each spatial direction. This results directly in limited 
parallelism due to a data dependency of the first-order recurrence type. Second, 
a significant part of the algorithm involves solutions of the Euler equations on 
coarse grids. Since parallelism is limited by the number of mesh points, even the 
explicit portion of the code becomes a potential bottleneck. Additionally, mul- 
tigrid codes are more readable if they employ recursion when changing grid 
meshes, but recursion is disallowed in VAL. 

FL052R utilizes a full multigrid sawtooth cycle, solving the equations on an 
initial grid, restricting the grid to a coarser grid, solving again, interpolating 
back to  the finer grid and solving once more. This cycle repeats. employing an 
increasingly wider range of grids. In particular, FL052R cycles between 32x8 
and 64x16 point grids 40 times, then between 32x8, 64x16, and 128x32 point 
grids 40 times, then four grids (adding a 256x64 grid) 400 times. 

The Program. For this study. FL052R was viewed as one pipeline, many 
instructions long and many instructions wide. The scientist did not perform a 
complete coding of the application, but rather focussed on some of the key parts 
of the computation. The remainer of this subsection displays one such key part. 
The interested reader is referred to  the longer report [Merr85] for more detail on 
this and other portions of the computation. 

As an example of how an explicit portion of the code might be programmed, 
Figure 4 shows the FORTRAN code and corresponding data flow graph for the 
second order smoothing subroutine. For clarity, the loop for only one direction, 
one variable, and one row of data is shown. In practice all four variables, both 
directions, and 64 rows of data could be executing simultaneously with a 
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SUBROUTINE FILTC(I2.W.P.VOL DTL)  
C FOUR EQUATION MODEL 
C SECOND DIFFERENCES WITH FIXED COEFFICIENT 

COMMON /C/ IL IJ 
COMMON / E /  VIS0 
COMMON /FIL/ FW(257.65). RFlL 
DIMENSION W(12 1) .  P( l2.1).  VOL(12.1). DTL(12.1) 
DIMENSION FS4(257) 

FlSO = VISO/32 

DO 20 J=2. JL 
DO 10 I=1. IL 

FIL = FlSO * (VOL ( 1+1. J) / DTL(  1+1, J) +VOL( I .  J) / DTL( I. J) ) 
FS4( I) = FIL * (W(  1+1 .J)-W( I.J)+P( 1+1 .J)-P( 1.J)) 

10 CONTINUE 
DO 20 I=2.IL 

FW(1.J) = (1. - RFIL)*FW(I,J)+RFIL*FS4(l-l)-FS4(1)) 
20 CONTINUE 

RETURN 
END 

FW mt- X FW 

Figure 4. FORTRAN Code and Data Flow Graph, Explicit Smoothing 

transpose between the two directions. The boxes labeled “ID” are “identity” 
instructions and are used, for example, in the second row of the data flow graph 
to implement the W(I+l.J)-W(1.J) expression. 
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In the figure, the input data are shown on the left. They arrive as an 
ordered stream with W( 1) arriving before W(2) which arrives before W(3). 
Xotice how the averaging and difference operators are implemented by taking 
inputs from different points in the input stream. The output. FW. appears as an 
ordered stream on the right. 

Other sections of the longer report discuss the handling of boundary condi- 
tions. transposes. and the implicit second order smoothing of the residuals. 

Conclusions. Several assumptions were made concerning performance of 
the machine and the nature of the activity that would occur during the course of 
the calculation. One was that all network traffic consists of floating point data 
traveling between subroutines. It was  found that for the FL052R code there 
were three bottlenecks that prevent effective use of all 256 PES in the proposed 
architecture despite the explicit algorithm used. The network used must be able 
to support matrix transposition if performance is not to suffer. In spite of this, 
performance levels approaching that of a Cray-1 may be possible for a computer 
costing far less. 

The problems with the data flow machine are its tiny scalar speed, need for 
massive temporary storage. prohibition of recursion. and lack of debugging sup- 
port. 

6.3. Computational Chemistry 
Team: Harry Partridge d Gene Levin 

Problem Overview. In quantum chemistry we determine the properties 
of atoms and molecules from first principles by solving the time independent 
Schrodinger equation. The solution algorithm we employ involves a double basis 
set expansion of the wave function 9 using a variational principle or a perturba- 
tion expansion to  optimize the parameters. The quantum chemistry techniques 
are capable of providing accurate atomic and molecular properties such as molec- 
ular geometries, dissociation energies and transition probabilities. The calcu- 
lated properties both complement and supplement the available experimental 
data. In addition, the results can provide qualitative insight of chemical 
phenomena. The steps selected for study in the workshop were chosen to  reflect 
both the computationally intensive kernels and data manipulation requirements 
of our applications. 

Mathematical Model. The solution involves a range of techniques includ- 
ing massive table look-up for integral values and extensive matrix calculations. 

Abstract Algorithm and Approach. The algorithms studied are: 
Sparse Matrix Vector Product: The product of a large randomly sparse 
symmetric matrix times a set of vectors occurs in many applications. In 
computational chemistry it occurs in constructing the Fock matrix in Self 
Consistent Field (SCF) calculations, in solving linear equations, and in solv- 
ing for the lowest few eigenvalues and eigenvectors. 

A. 
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B. Four Index Transformation: The four index transformation is needed to 
transform the two electron integral file (a function of four variables, 
F(ii,k,l), with respect to a different basis set. 

C. 

The transformation algorithm involves the formation of partial sums to 
reduce the computational complexity but it requires a significant shuffling 
(reordering of the partially transformed integrals) half-way through the cal- 
culation to keep the memory references local. To obtain efficient vectoriza- 
tion it is necessary to treat molecular symmetry explicitly, which essentially 
blocks the function F into relatively dense subunits. 
Diatomic Slater 2-electron Integrals: The numerical evaluation of O(n ), 
where n=100-300. diatomic exponential (Slater) type orbital two-electron 
integrals. The algorithm uses the Keumann expansion for r,;’ and each 
term in the expansion involves an iterated double numerical integration. 
The integrals are required to have a high degree of (absolute) accuracy- 
typically < lO-”--to avoid numerical linear dependency problems. A charge 
distribution approach is implemented. For each term in the expansion the 
set of n charge distributions(CD) are calculated and all possible vector dot 
products (length O(SO0)) are formed. Given sufficient memory to hold all 
of the charge distribution quantities the CPU time is dominated by the dot 
products. 

4 

2 

The Program. A .  The sparse matrix vector algorithm for symmetric 
matrices is complicated slightly (relative to the nonsymmetric case) by the fact 
that each element H.. contributes to  both Di and D j  . 1/0 and memory concerns 
still strongly suggest that the symmetric form of H be explicitly utilized. One 
implementation requires each processor to have access to all of C with each pro- 
cessor forming a partial result Dp. When all of the records of H have been pro- 
cessed the product D is calculated as 

1J 

The algorithm is easily distributed over the PES where each PE stores a portion 
of H in its array memory. The corresponding partial sum Dp is computed by 
importing the needed elements of the vectors C. Depending upon the size and 
sparsity of the matrix of the matrix, each PE will need only part of the elements 
of C. For the n=20000, 1% nonzero test case, each PE will require about 3/4 of 
the the elements of C. The rate limiting step of this implementation is therefore 
the network transfer time to transmit C and Dp. For the above example the 1/0 
time would be about 0.16 seconds while the total CPU time would be only 0.01 
sec. The total execution time is thus 0.17 seconds. 

Another implementation has each PE store about m=n/256 elements of C 
and of D. The matrix is then divided (sorted) into M*(M+1)/2 subblocks each 
spanning approximately an equal number of rows and columns (m) with each 



subblock allocated to a PE (M=22 square subblock would allocate one block to 
253 of the PES). Each PE would then require no more than 2m elements of C 
and would calculate no more than 2m elements of Dp. Furthermore, each ele- 
ment of D could be summed requiring no more than L4 elements of Dp. Thus. 
the number of words to be transferred over the network for each PE is m(M+2). 
For our sample problem. m=i9  and M=22: the network transfer time is less than 
0.01 seconds. 
B: The four index transformation. If we define the n, by nl matrices F k‘ as the 
corresponding subunits of F then the first half transform may be expressed as a 
sequence of similarity transforms, H k’ = C F C . If we shuflle the elements of 
H to  form H ’  with Hkl’l1=Hl:. then G may be formed as another sequence of 
similarity transforms. The algorithm is thus broken into the following steps: 
1. The expand step to form the matrices. Fk‘ . Only the elements of F greater 

than some threshold are usually stored on disk. In addition. for many of 
the symmetry blocks of F there are restrictions on the range of the indices 
since only the unique integrals are stored. 

First half transform. denoted as MXM1. 
Sort or shuffle step to reorder the partially transformed integrals. Since the 
integral file does not fit into memory, random access is used to  perform a 
bin sort. 

Second half transform. denoted as MXM2. 

2. 

3. 

4. 

The algorithm transfers trivially to a multiprocessor environment because each 
of the O( n *) similarity transforms can be performed independently. Assuming 
the integral file will fit in memory then this algorithm will perform well on the 
data flow machine. The shuffling required between half transform steps will not 
dominate the calculation. 
C. Two electron diatomic Slater integrals. There are many organizations possi- 
ble for implementing this algorithm on multiprocessors. Since any number of the 
O ( n 4 )  integrals may be computed independently, the simplest approach is to 
partition the integral list and have each processor work on separate partitions. 
If we define the speedup in performance for n processors to be the ratio of the 
performance of n processors to that of one processor. then the speedup for this 
implementation is n since each of the partitions is independent. The implemen- 
tation could be rather inefficient, however. since most of the CD quantities will 
need to  be recomputed many times. We can divide the O ( n 2 )  CD quantities 
among the PES (m per PE) and partition the integral file into subblocks. Each 
processor would need at  most 2m CD quantities, and each would compute 
O( m ’) integrals. Also, each PE would need to  only import the CD quantity itself 
and not the associated tables needed to  form the CD quantity. This implemen- 
tation is thus expected to perform very well, close to the 1.2 GFLOPS limit, 
without requiring considerable redundant calculations. 

- 2s - 



Conclusions. In conclusion, computational chemistry codes can perform 
well on the static data flow machine [Levi85]. There is a considerable degree of 
parallelism in the algorithms that can be easily exploited. Considerable algo- 
rithmic development will be required for some steps (notably the 
multiconfiguration self consistent (MCSCF) and configuration int.eraction (CI) 
steps) to  reduce the network traffic. 

The scientists found coding in 1-AL straightforward but expressed a number 
of reservations about the programming environment. They also felt that the 
compiler directive (advice file directives) to  effectively map the problem onto the 
data flow machine might be nearly as hard to  write as the VAL program itself. 

For the particular machine proposed to  the data flow study, disk 1/0 is 
significantly underdesigned for chemistry algorithms. The total disk 1/0 rate is 
little more than that of a single channel on a Cray and is far less than of the 
Cray Solid State Disk rate (1.2 GByte per second). The work done for this 
application assumed that there would be a large buffer memory to synchronize 
1/0 and to allow simultaneous read of sequential records (to different PES) from 
a file possibly scattered over many disks. 

Some of the chemistry algorithms will not fit in the assumed instruction 
niemorp size. The analysis was not carried out to sufficient detail, however, to  
provide a realistic estimate of the instruction memory space required. 

6.4. Galactic Simulation 
Team: Eric Barszcz t? Cathy Schulbach 

Problem Overview. The problem is to  simulate the movement of parti- 
cles, i.e. stars, in a galaxy. Typically, an entire galaxy is simulated. Inputs to  
the simulation are the initial particle positions and their velocity vectors. There 
may be more than 100,000 particles. Currently, this code runs on a Cray X- 
MP/22 and the particle pusher phase takes approximately 0.7 seconds per itera- 
tion. 

Mathemat ica l  Model. A discrete simulation is used. At each time step, 
the change in particle position is computed based the current position and the 
surrounding potentials. Ideally, the change is computed a t  the finest granular- 
ity, that  is, the effect of every other particle on the current particle. 

Abs t rac t  Algori thm and Approach.  Because of the size of the problem, 
the ideal solution is not feasible. Instead, break the galaxy into a grid and com- 
pute the average potential a t  each grid point. Use a 6 4 x 6 4 ~ 6 4  grid. 

The computation has two phases. First, the potential grid is computed 
based on the density grid. Second, the particle positions are updated based on 
both current position and the force on a given particle from the 26 nearest 
potential grid points. The new position information is then used to compute a 
new density grid which is used in the next iteration of the computation. 
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The. team rejected transliterating the program from FORTRAN into VAL 
because the algorithm was not evident in the program. Instead, the team 
started with the algorithm as specified above. but also questioned this choice in 
their report. noting that the algorithm may have been chosen because it was 
easy to implement in FORTRAN. Furthermore. because of the size of the prob- 
lem, the team chose to implement only the second half of the algorithm. called 
the particle pusher. on the data flow machine. The estimated run-time for the 
particle pusher on the data flow machine were compared to the 0. i  second one- 
pass time on a Cray S-MP. 

The team chose to store the potential grid data in the local memory of the 
PES and then stream the particle data past such that for each particle. The new 
position computation is performed as soon as its neighborhood is available. The 
potential grid is too large to fit in the local memory of any one PE. so it must be 
divided up and placed in more than one PE. The scientists developed an algo- 
rithm to determine the effective computation rate based on different dividing 
schemes. 

The final program developed divided the potential grid 
into 4 x 4 ~ 4  cubes with boundary layers. Each cube is stored in a separate PE. 
Then. assuming the particle arrays are presorted. each PE reads only a section of 
the particle memory. Using this approach, and summing the times to read the 
particle data, to  drain the pipe afterwards, and to bring the results together 
yields 0.0516 seconds per iteration. 

The team then examined the case where the grid size was changed to twice 
the resolution and the number of particles increased to one million and com- 
puted 0.289 seconds per step, or a computational rate of 1.17 GFLOPS. 

Conclusions. The particle pusher phase of the galactic simulation adapts 
well to the MIT static data flow architecture. Array storage is not a serious 
problem, but since this is only one part of the whole galactic simulation pro- 
gram. the number of PES and program storage may be too small to hold the 
entire program. 

The Program. 

6.5. Linear Systems 
Team: Merrell Patr ick 

Problem Overview. Sparse linear systems of algebraic equations fre- 
quently arise from the numerical approximation of mathematical models used, 
e.g., in structural analysis, fluid dynamics, and circuit analysis. As the models 
become more sophisticated and their numerical approximations become more 
accurate, the linear systems to be solved become very large and quite sparse. 
Such systems are usually solved using iterative methods (Reed841. 

For this study, then, we consider the general problem of solving the linear 
algebraic system 

. 
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K z - = f  

iteratively using the iteration defined by 
f ( k + l )  = A * ~ ( ~ 1  + c 

where x ( k  ~ ( ~ 1 ,  and c are vectors with n components and .4 is an n x n 
matrix whose elements are functions of the elements of K .  The matrix A is 
assumed to be random sparse with r percent of its elements nonzero. 

Abstract Algorithm and Approach. The "divide and conquer" para- 
digm for developing parallel algorithms was used to  define two different 
approaches. 

In the first approach the iteration matrix, A , and the constant vector, c , 
were partitioned into sets A [ i  ] and c [i 1, respectively, of n /256 contiguous rows 
for i = 1, ..., 256. A [ i ] ,  e [ i ] .  and a copy of the iteration vector P ( ~ )  were 
assigned to the array memory of PE i . P E  i . concurrently with all other PE's, 
evaluated the expression A [ i  ] z ( k  + c [ i  ] to produce components 
( i  - 1) .  /256+1 to  in /256 of the new iteration vector z ( k  +'I. 

In the second approach, A and c were partitioned and assigned to PE i 
as above. In addition. the set A [i ] in the array memory of PE i was then par- 
titioned into sets A [ i  , j ]  of n /256 contiguous columns for j = 1, ..., 256. In 
other words. .4 [ i  , j ]  was a block of n /256 rows and n /256 columns of the ori- 
ginal matrix, A . PE i then carried about a computation of the form 

for j in [1,256] 

endfor 

z ( k  + I )  = 0 

; r ( k  + l ) [ i  1 = z ( k  +l)[i 1 + A [i 1 * z(' )[i 1 

However, the algorithm is implemented so that PE i finishes its computation 
after PE i -1, but before PE i +1. The motivation for this and other details of 
the programs for the two approaches is discussed in the next section. 

The Program. The program for the first approach was written so that the 
PES carried out their computation concurrently. Since each PE owned a copy of 
the iteration vector. before it could continue with the next iteration it had to 
send the new components it computed to all other PES and, in turn, receive new 
components of the iteration vector from all other PES. This organization of the 
algorithm meant a large amount of data had to  be communicated amongst PES 
between each iteration step and offered the potential for the communication net- 
work to  become a bottleneck. This potential problem motivated the second 
approach. 

In the program for the second approach, only PE 1 owns a copy of the com- 
plete iteration vector z ( ~ ) .  The computation in PE i proceeds as follows a t  a 
given time step: 

if i not equal 1 or 256 then 



PE i reads z (k +l)[ i ] from its array memory 
after it has been received from PE i-1 

PE i multiplies A[ij] and z (k ) [  j ] and 

PE i forwards ~ ( ~ ) [ j ]  to array memory of PE i+l  
if j = 236 then PE i adds c[i] to  the accumulated sum 

adds it to  the accumulating sum 

yielding r ( k  - * ) [ j ]  and sends it to the 
array memory of PE 1 where it becomes the new 
z ( ' ) [ j ]  

This shows that at  a given time within an iteration, PE i only owns n /256 
components of the iteration vector rather then all n components. Furthermore, 
the communication of the iteration vector amongst PES is spread out over the 
time required for an iteration rather than waiting until the end of an iteration. 
This implementation also allows for the possibility of overlapping the communi- 
cation of data amongst PES with the computation. These two things together 
reduces the possibility that communication will become a bottleneck. It is also 
important that synchronization required for checking for convergence of the 
iteration can be handled more smoothly in the second approach. 

Conclusions. The above programs were mapped onto the machine assum- 
ing problem parameters of n (number of equations) = 40,000 and 
r (sparsity) = .04. These assumptions mean there were 64M nonzero elements of 
A requiring 128M floating point operations per iteration. Since the A matrix 
was assumed to be stored in sparse form 80M words of storage were required. 
We assumed that the combined memory of the 256 processors were sufficient to 
satisfy these storage requirements. 

A first pass analysis based on floating point operation counts, processor 
speeds, array memory access times, and interprocessor network capacity indi- 
cated that the parallel execution time of the program for the first approach was 
roughly twice that for the program implementing the second approach. This 
analysis assumed communication between a PE and its array memory could be 
overlapped and that the logical functional units in the machine would be able to 
keep the floating units busy. 

A more careful analysis of the data flow graph from which the first program 
was developed and the number of logical operations required to feed the floating 
point units showed that performance of the machine was sensitive to the number 
of logic units. Three to  four logic units were needed in order that  logical arith- 
metic not become the bottleneck in the computation. The analysis also clearly 
indicated that the performance of the machine was affected by the array memory 
access method used by the machine. In particular, random access of data from 
the array memories was far superior to sequentially streaming data from the 
memories through the functional units. Our analysis did not indicate that inter- 
processor communication would be a bottleneck as we had earlier feared. 
Details of this analysis can be found in [Reed85a, Reed85bI. A careful analysis 
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of the data flow graph from which the program for the second approach was 
written is in progress. 

Based on the results we have so far, we believe that with careful design of 
the functional units and attention to memory access patterns. iterative methods 
for solving large sparse linear systems of equations can be implemented efficiently 
on a static data flow machine. 

NLU 3 Thinker 

6.6. Artificial Intelligence: Natural Language Processing 
Team: Rick Briggs 
Problem Overview. A natural language processor is a system that can 

understand and intelligently respond to  natural language input. For this prob- 
lem, solution techniques. algorithm designs, and performance statistics are under 
active research and final results are unavailable. For an overview of the topic, 
see (Bobr751. 

Abstract Algorithm and Approach. Natural Language Processing 
(SLP j can be viewed as a three-part process: understanding. intelligence, and 
expression. Figure 5 gives the overall structure: Katural language comes in 

. - Expresser 

Natural 
Language 

Natural 
Language 
Answer 

t 

Dictionary 

Figure 5. Structure of Natural Language Processor 



(either query or text) and the NLU (Satural Language Understander) deter- 
mines the real meaning of the input, including all semantic nuances not explicitly 
stated. This is done by consulting: 

1.  

2.  

Syntactic information. a relatively small database. 

Semantic knowledge. the true "knowledge base" of the system in which is 
stored knowledge of the world to aid in understanding; can be enormous. 

3. Dictionary, the English lexicon matched to  meanings in representation: 
there should be at least 100.000 entries with 1 million being more realistic. 
Each of these entries can contain complicated structures. 
For the purposes of this study. only the Natural Language Understanding 

(NLU) portion was used. A more detailed diagram of its structure is given in 
Figure 6. Further information on the processing of natural language can be 
found in iBobr80. BruciS. Ries74, Scha741. 

A series of searches are necessary to find the appropriate semantic struc- 
tures and syntactic information of the input. The remaining parts of the compu- 
tation involve the expansion and filling of "templates," or "cases." where each 
template has slots to  be filled either with primitives, or other semantic tokens 
that need to further be expanded. 

Either text comes from a 
human directly or the NLP is hooked up to, say, a news wire and is receiving 
input over time. as in [Cu1178]. In the first case, the processing of different con- 
text blocks should be spread out in space, whereas in the last, pipelining is more 
appropriate. 

The Program. A portion of this application was written in Prolog, and 
was then used for the translation to  VAL. 

The steps at the top of Figure 6 to  find the appropriate semantic structures 
and extract the syntactic information from the input are first performed sequen- 
tially. This step can be performed rapidly using standard sequential methods; it 
was not encoded in parallel. The main computation of the program, called "gen- 
erate," takes the form of a forall definition of an array. called "case-array" in 
the program, in which there are embedded forall loops for instantiating primi- 
tives. The cases are templates with holes that require further instantiation with 
cases (hence the loop on the .*Instantiare Case" box in Figure 6) or have holes to 
be filled with words in the lexicon. 

The trimming step would allow each slot to  be processed in parallel by 
allowing multiple candidates to  fill the slots according to  only semantic con- 
siderations. Later, to select the correct instantiation, syntactic information can 
be used to  "trim." Note that backtracking sequentially, which will be slower, 
would allow one to fill in the correct slot immediately by examining the other 
slots, since in this case processing is not done in parallel (although backtracking 
can be simulated to  some extent using a queue). 

For text analysis there are two possibilities. 
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Natural ( Dictionary ] [ Primitives ) 

Trim * Paraphrase 

I I I many in parallel 

Instantiate 
Primitive 

‘T Candidates 

JI 
Natural 

Language 

Figure 6. Structure of the AI VAL Program 

. Finally, these bindings are mapped onto a template and output in a para- 
phrased (understood) form. 
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1. 

2.  

3. 

4. 

Conclusions. 
The lack of global databases in the data flow machine was a serious prob- 
lem. 
Overcoming sequential thought patterns so familiar in LISP and Prolog is 
not easy but is ultimately necessary if AI applications of significantly higher 
performance are to be achieved. 
The lack of function libraries, debuggers, and other tools (as in InterLISP) 
is a problem at least in getting AI programmers to accept parallel machines. 
The inability to perform 1/0 at the normal level encountered in (say) Inter- 
LISP was a problem. 
L-AL and data flow were less of a problem than the lack of normal libraries, 

databases. and software tools -- all heavily used in AI applications. The scientist 
concludes his own report with 

On the positive side. it is a good exercise to think in the way necessary to pro- 
gram in I'AL. Almost everybody who has done programming is very used to  
sequential thinking. .4nd apart from lack of shared memory, the new way of 
thinking is superior to the old with respect. to .41 applications for reasons men- 
tioned above. 

6.7. Queueing Network Analysis 
Team: Ken Sevcik d Peter Denning 
Problem Overview. Queueing Network Models are tools for deriving per- 

formance estimates for computer systems and communications networks 
[Denn78]. From descriptions of workload intensities (the volume of transactions 
or messages) and service demands (the service required on average at  each sys- 
tem device. or center by a work unit). performance measures such as throughput, 
average response time, utilization, and average queue lengths can be computed. 

Exact solution of a queueing network model can, in general, be obtained 
from the solution of a system of simultaneous linear equations in which the 
equilibrium state probabilities are the unknowns. This approach is practical 
only for networks with very few classes, few devices, and few customers per class. 
With two classes, five devices, and ten customers per class. the number of equa- 
tions exceeds one million. For example. using mean value analysis (MVA) 
[Reis80]. the throughput and average response time of a single-class queueing 
network model with N customers and service demands, D,, D2, ..., DK at the 
K centers is given by: 

Throughput : X ( N ) = N / R  ( N )  ; 
K 

1 =1 
Mean Response Time : R (N )= R, ( N  ) 
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1 where Ri ( N  ) =Dt (1V -1)  
R (N - 1 )  

Fortunately. queueing network models t h a t  satisfy restrictions leading to 
the property of separalrility [Lazo84] can be solved efficiently. Techniques are 
known for obtaining performance estimates directly, rather than by summing 
state probabilities over subsets of system states. For one such technique. called 
convolution or notmaliaatiori constant unalysis (NCA)  IBuze73, Reis75) 

Throughput : X ( S ) = G  ( X  - l ) / G  ( N )  ; 

(2) 
G (A’ 

Mean Response Time : R ( N ) = N  1 
G (lV -1) 

where G (-4’) = g ( N , K )  and g ( n  , k )  = g ( n  .k - 1 )  + Dk x g ( n  - 1 . k )  with 
g ( 0 . k )  = 1. k = 0,1.2. .... K. and g (n .O) = 0, n = 1.2. ..., S .  This expression 
for G ( X  ) is efficient for calculating the normalization constant that assures 
that state probabilities sum to one. and is defined by 

For large multiple-class queueing network models, exact solution even by 
MV.4 or SC.4 can become computationally intractable. The number of opera- 
tions required by both MVA and NCA performed recursively (NCR, using 
g ( n  ,k ) )  is approximately 4 K m ( N ,  +1) ,  where C is the number of classes, and 

N ,  is the number of customers in class i . 
Abstract Algorithm and Approach. The team considered three 

methods of obtaining exact solutions. The first was the MVA recursion (Eqns. 
( l ) ) ,  while the others used a normalization constant computed either recursively 
(NCR) or directly (NCD with Eqn. ( 3 ) ) ,  and then using Eqn. (2) to obtain the 
performance measures. 

Performance Tables 2 and 3 summarize the results. Space and operations 
required for algorithm execution on sequential architectures are given. For data 
flow architectures, estimates of t h e  number of operator nodes in the full data 
flow diagram are given along with the number of time steps required under three 
successively more realistic assumptions: 

1. an unlimited number of PES and unlimited fan-in and fan-out at  each 
operator (“ideal” case), 

2. an unlimited number of PES, but operator fan-in and fan-out two or less, 

3. only 256 PES with operator fan-in and fan-out two or less. 
For more discussion and justification of the table entries see [Sevc85]. 

1 
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Table 2. Approximate Computational Costs for a Single Class. 

/ /  1 '  

h.I v A NCR NCD 

operations 4 sh- 
space m i n ( S  . K )  

DATA FLOW 

MVA I NCR NCD 

operators 
ideal 

Z-wa? fan 

256 PES 

2'\h' K 2V-L 
2 -1' - K  -2 2 
2 . V - K  - 2  -v -logz( K L  ) 

i 1 31VK 

I 5'v I -V 'J-logzh' 
3 .VK 2 SA- A- -\- - L L - - 
256 256 256 

if min( N ,K )>256 if h' >256 if L >256 

N + K - 1  
L ; (  N I 

Single Class Case. MVA and NCR are usually thought to  have sirnilat 
computational cost on sequential machines, so the difference between NCR 
( 0 ( N  K )) and MVA ( 0 ( N  log,K ) )  with limited fan-in and fan-out is interesting. 
NCR effectively treats all customer population levels in parallel; MVA sums 
residence times over all centers for population levels separately. For NCD, the 
products over h' devices require log&' time steps. and the summation over all 
feasible states requires log& time steps. Because log& (essentially log,( N !)) 
grows much faster than N .  NCD is uninteresting for models of realistic size (Le., 
N 2 4  and K 2 4 ) .  A sum over the massive number of system states requires so 
many steps when fan-in is restricted that the gain of parallelism elsewhere with 
NCD is more than offset. Note that XCD is the most highly parallel of the three 
algorithms, yet given limited fan-in and fan-out it leads to less efficient parallel 
code, even for quite small models. 

In practice. all useful single-class models are such that 4NK < io7, and they 
can be solved interactively on conventional machines. 

Multiple Class Models. With fan-in of two, NCR is again better than 
MVA (assuming E N ,  exceeds K )  because it avoids recursion over customer 

population levels. NCD remains acceptable (even preferable!) for slightly larger 
c 
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Table 3. Approximate Computat ional  Cost for Multiple Classes. 

operations 

space 

~ 

operators 

ideal 

%way fan 

256 PES 

11 \' A I NCR I NCD 

f C 

11 \' A 

S C h - n ( . V ,  - 1 )  
C 

6 'Ye 
C 

256 

if ENc >8 
C 

D.4T.4 FLOW 

NCR 

CKH(.V,  - 1 )  
C 

2K 

K (log,C +Elogz(Nc + I ) ]  
C 

C K n ( N c  il) 
C 

if > 2 5 6  
N m.x 

Ni +K - 1  ' = n (  i =1 N i  

NCD 

K LC + E N c  I 
2 

maxN, +log2( CKL ) 

K LC +En., ( 1  
256 

if L >256 

models than in the single class case, because the more classes there are, the 
longer L stays small relative to n(Nc + I ) .  

f 

,411 models so large that they cannot easily be solved interactively on 
sequential architectures have enough parallelism that their solution on a data 
flow architecture is constrained only by the number and speed of the PES 
(assuming a compiler effective at balancing PE workload). The total number of 
operations required depends on the number of devices, classes, and customers per 
class. The number of devices is a multiplicative factor, so with a 1000-fold com- 
putational speedup, models with 1000 times as many centers can be solved. The 
number of classes and customers per class affect required operations exponen- 
tially. Consequently, only much smaller changes in the number of classes (unless 
class populations are very small) or in the number of customers per class (unless 



the number of classes is very small) can be supported by 1000-fold speedup. 
Thus, practically, it is not clear that data flow architectures will significantly 
assist solution of queueing network models. 

1. 

2. 

3. 

4. 

5 .  

Conchisions. 
Practical space and parameterization limits restrict the size of useful single- 
class models to those that can be solved interactively by MI’A or SCR on 
sequential machines. 
MVA or XCR algorithms on data flow machines would make it possible to 
solve multiple-class models with a few more classes, or with somewhat larger 
class populations. 
The most parallel abstract algorithm (IL’CD) did not lead to  eficient paral- 
lel code due to  fan-in/fan-out restrict ions. 

While models can be larger (more classes. larger populations), the difficulty 
of generating parameters means that useful models will not grow 

This work focussed on “exact” solutions of queueing network models. If 
close approximate solutions are acceptable (they usually are: model parame- 
ters are seldom known precisely). then use of approximate algorithms 
1Schwi9. Chan821. which have computational costs independent of class 
populations (such as o (h’c ) or 0   KC^)), is appropriate. These algorithms 
execute acceptably on today’s sequential computers. 

significant 1y. . -  
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7. What We Learned: Comments from the MIT Group 
The RIACS Data Flow Evaluation Study has been an important contribu- 

tion to the evolution of the MIT Static Architecture into a machine design that 
can be successfully applied. The study confirmed that data flow machines can 
achieve high performance in important practical problems. and that the pro- 
gramming methods and concepts necessary to  make effective use of them are 
readily accessible to scientists experienced in the application of conventional high 
performance machines. The study augments and reinforces program analysis 
studies that have been conducted on five applications at MIT [Denn84a], but 
without the guidance of experts in the application fields. 

Users of the study report should understand that the machine configuration 
specified for the study was chosen only to provide a specific target for evaluation. 
Indeed. one advantage of data flow architecture is that the number of processors 
and memory units may be chosen to  fit users' needs. We imagine that machines 
with 16. 64. and 256 PES might be found well matched to  various problem 
domains. For example. the multi-grid CFD computation appears well matched 
to a data flow machine with 16 PES. Furthermore, the size and transfer rates 
for the array memory and disk storage can be adjusted without making funda- 
mental changes to  the architecture. In fact the objective of chosing a specific 
configuration for the study was to  determine which parameters of the design 
were limiting applicability of the machine. 

We were gratified that the teams found our programming language VAL 
easy to  learn, and that, by the beginning of the second week, they were in good 
command of the issues involved in structuring machine code for high perfor- 
mance on the data flow machine. 

Several comments made by the teams merit a response; these deal with the 
specified machine configuration, provisions for program debugging, the applica- 
bility of array memory to global data bases and matrix transposition, and the 
applicability of VAL and static data flow computation to  artificial intelligence 
problems. 

7.1. The Machine Configuration 
From several of the teams we learned that the capacity and transfer rates 

specified for the array memory and disk system5 of the machine were limiting the 
performance achievable for their applications. Some problems can benefit 
significantly from large amounts of array memory at  each PE. Since the time of 
the study we have found it desirable and practical to  provide for much larger 
array memory capacity (several million words or more for each PE),  and a 
transfer capability of 5 million (64-bit) words per second for each PE. We also 
learned that disk storage transfers through the routing network would be a 
bottleneck in applications involving very large amounts of data. In response, we 
are now planning that communication with disks will be supported by direct con- 
nections between PES and disk control units, each connection supporting 5 
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million words per second or more for one PE. 

7.2. Program Debugging 
Considerable concern was expressed by team members about the debugging 

of I*AL programs. specifically the difficulty of requesting output of internal vari- 
ables. arguments. and results of functions invoked during program execution. In 
the lectures at  RIACS. we did not cover the program tracing facilities of VAL- 
Sys. and are not sure to what extent the teams made use of these facilities. An 
important facility not provided by YALSys is the ability to “break” execution of 
of a data flow program at an arbitrary point (a variable definition, say). This is 
a feature that could be added to the V.4L interpreter, and one that will be sup- 
ported for compiled programs by a simple hardware feature that will permit 
insertion of “breakpoints“ into data flow machine code. The PE will be designed 
so any instruction it holds may be altered so that. after its execution. it sends an 
information packet to the host computer instead of signaling its successor 
instructions. Following analysis of the computation state by a debugger pro- 
gram (all information on which the breakpoint instruction depended will be 
static), the debugger can cause the host to send a command to  the PE that 
causes the breakpoint instruction to signal its successors. Of course implementa- 
tion of the debugger requires information from the compiler about the relation- 
ship of variable names in the VAL program to the locations in the machine of 
the data values and the data flow instructions that produce them. The ability 
to  provide this information will be an important feature of the compiler. 

7.3. Array Memory 
The Artificial Intelligence team criticizes the absence of “global memory” as 

making access of a global data base of stored knowledge difficult. The Computa- 
tional Chemistry team criticizes the absence of “shared memory” in view of the 
importance of support for transposing multi-dimensional matrices and argues 
that special hardware should be provided for this purpose. Both of these 
remarks concern problems that affect any highly parallel machine. One is the 
problem of distributing a large data base over many processing nodes. Either all 
requests to  access the data base must pass through a single “monitor” or *‘guar- 
dian” of the data base. or the data base must be divided up in some way that 
permits accesses to  different sections to be handled by several monitors. The 
techniques that have been proposed to implement either strategy are as usable in 
data flow computers as in other forms of distributed computer organization. We 
believe proper attention to hardware support can make data flow machines more 
attractive than other parallel architectures for such applications. 

The transposition of matrices is a classical hard problem for parallel com- 
puters. Its efficient support does not depend so much on “shared memory” 
specifically as it does on efficient communication among processors. The ability 
of the proposed data flow machine to do matrix transposition could be improved 
by increasing the capacity of the routing network. This is planned in any case, 
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since we have found that the amount of hardware in the specified routing net- 
work is small in comparison with the hardware used to  build the PES. However, 
a large increase in performance for matrix transposition does not appear war- 
ranted because in most cases where transposition is used some computation can 
be overlapped with data movement operations. 

7.4. Applicability to AI Problems 
Skepticism over the applicability of Y A L  and the static data flow architec- 

ture to  artificial intelligence applications is understandable since our efforts on 
data flow computation have been directed specifically at supporting “scientific” 
computation. Actually, many workers in the field have argued that artificial 
intelligence problems offer a high degree of parallelism. Yet there is no generally 
accepted programming language or methodology for expressing AI  problems for 
massively parallel computation. The mainstay AI  programming language Lisp 
and the programming style currently used with Lisp machines will not be 
effective on highly parallel computers. Xeither will the logic language Prolog as 
presently cast. 

The principal comment from the AI team is that  VAL is not sufficiently 
“high level” to  be a suitable A I  language. We are not certain what the scientist 
means by “high level.” but one possibility is that he is disappointed by the 
absence in V.4L of facilities to  support data abstraction. The addition of such 
facilities would make the programming of AI problems “more natural” and this 
aspect will be considered for future revisions of VAL. Yet this change in VAL 
would not increase the “expressive power” of the language. 

It may be that the AI scientist is concerned that too much writing is 
required to  express an algorithm in VAL as compared to  Lisp -- primarily due to  
the strongly typed nature of VAL. This will be less of a problem once automatic 
type inference is incorporated in the VAL compiler, as this will relieve the pro- 
grammer from having to write most type declarations, while maintaining the 
benefits of type checking by the compiler. 

We were pleased to witness the experience of expressing a reasonably 
authentic artificial intelligence problem in the VAL language and to become 
acquainted with the issues of exploiting the power of a data flow computer in its 
execution. We believe that many AI  problems will be solvable with high perfor- 
mance using the static data flow architecture. 
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8. Conclusions 

posed static data flow computer architecture. 
The following are the conclusions from the study about VAL and the pro- 

8.1. Programming 

8.1.1. New Approaches 
One of the questions addressed by the study was, “To what extent would 

data flow concepts suggest new approaches to problems?” To achieve maximally 
parallel algorithms. Jack Dennis advised participants to return to basic princi- 
ples: identify the mathematical model underlying the solution, express the data 
dependency graph of the solution as part of an abstract algorithm, and finally 
map the abstract algorithm into the data flow language. In terms of Figure 1, 
he advised participants to back up to  Stage 1 of the problem-solving process 
rather than transliterate a Stage 2 algorithm or Stage 3 program. 

K e  observed that in six of the seven problems, the mathematical model is 
well understood and the abstract algorithm is already an expression of a highly 
parallel solution. Hence six of the teams spent their efforts on mapping their 
abstract algorithms into V.4L. and the \’.%L algorithm into program-graph nota- 
tion for compilation. Only in the AI problem was the mathematical model 
sufficiently undeveloped that a retreat to this stage of the problem solving pro- 
cess may be worthwhile. 

It is reasonable to  suppose that for well understood problems the 
mathematics have evolved to the point that  the abstract algorithm is already in 
a highly parallel form. This finding may not generalize outside the study, how- 
ever. because there are other problem domains where highly parallel abstract 
algorithms have yet to be fully developed. Moreover, one team (Queueing Net- 
works) showed that the most parallel abstract algorithm does not lead to the 
fastest data flow algorithm. 

Another implication of this finding is that future evaluations of this kind 
may want t o  pay special attention to being sure that the participants have 
indeed demonstrated beyond reasonable doubt that their abstract algorithms are 
in fact highly parallel. 

8.1.2. Programming Environment 
The MIT translator and interpreter were developed in 1979 and implement 

what is no longer modern programming technology. One shortcoming is the lack 
of assistance for writing, managing, or debugging VAL programs. This was seen 
as a serious shortcoming by several of the participants. One scientist pointed 
out that  even the FORTRAN-style of debugging programs, using WRITE state- 
ments to  display intermediate results, is cumbersome in VAL. 

VAL is designed to  express algorithms that use a pure data flow model of 
computation (see Section 5.1). However, the static data flow architecture 
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considered in the study=does not implement this ideal model. In particular, the 
machine includes array memories, to support high performance operation, that 
are not part of the model. The array memories are outside the scope of the 
model and also outside the scope of \‘AL: a programmer cannot control array 
memory activity via a VAL program. Several study team members were uncom- 
fortable with this fact because they felt that they would need to control array 
memory usage to achieve good performance of their application code (with 
respect to the best performance that could be achieved). An ‘*advice file“ com- 
panion to a VAL program could be used to provide a VAL compiler with infor- 
mation to guide its allocation of array memory. 

Although program graphs play a strong role in the abstract algorithm and 
again in the mapping of VAL to machine code, there is no interactive graphics in 
the programming environment. Several team members indicated that it might 
be convenient if they could just draw the data flow graphs and have a graphical 
editor and compiler translate them into the language of the machine. We envi- 
sion that a programming environment could be constructed based on direct ren- 
dition of data flow programs as graphs. The new language (“Visi-VAL”?) might 
complement the current flat language, VAL,  and is worth investigating. 

8.1.3. Learning Effort 
Although they had no prior experience with data flow machines, the pro- 

grammers participating in the study took only a very short time to learn VAL 
well enough to use it in their disciplines. (Most had learned VAL within two 
days rather than five days as we had anticipated.) 

In the AI area, there appears to be a much greater reliance on function 
libraries (e.g., in LISP) and on software tools (e.g., run-time debugging aids and 
powerful graphics interfaces) than in the scientific computing areas. The AI 
team’s criticism of the data flow machine is based on the lack of libraries and 
tools rather than on skepticism toward parallel programs. We conclude that the 
data flow concepts are sufficiently intuitive and well represented by VAL that 
they are easily grasped. It is likely that this was aided by the fact that the 
majority of abstract algorithms were already in a highly parallel form. 

8.2. Architecture 

8.2.1. Array Memory Bandwidth 
The Array Memory is the most problematic part of the architecture. 

Arrays arise naturally because most of the abstract algorithms pass matrices 
from one computational phase to  another. The participants were initially told 
to  ignore the representation of arrays and instead think of the abstraction that 
an array is stored inside a data token. Because in their experience the efficiency 
of their algorithms depends critically on how array data is represented, the parti- 
cipants did not generally accept this abstraction. 
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The bandwidth of the Array Memory is a concern. The aggregate 
bandwidth available to the 256 PE machine is 1 GByte per second. This is com- 
parable to  that available from a Cray X-MP(4) Solid State Disk (2.5 
GBytes/sec.). However. the individual bandwidth available to  a PE is only 2 
Mwords per second. Frequent access to the array memory by a PE (clock rate of 
200ns) may significantly influence the achieved processing speed of the PE. 
Some of the algorithms investigated in the study used enormous amounts of 
array memory. some in the form of very large sparse matrices. The MIT 
researchers have estimated that one of twenty memory references accessed an 
array element. In practice, we found this ratio to  be much higher. 

8.2.2. Array Memory Function 
Among the most important operations on arrays is transposition: the com- 

putational phase that consumes an array may require the elements to flow in 
different orders on program-graph edges from the orders in which they were gen- 
erated. Transposit ion is handled in conventional machines by random-access 
memory (RAM) -- the producing phase stores the array elements in memory 
shared with the consuming phase. In a data flow machine, however, there is no 
shared memory. 

We conclude that the architecture needs to explicitly incorporate hardware 
for transposing array data. This can be done with special purpose sorting net- 
works or with a staging memory such as that in the MPP. A clearer 
specification of array memory and transposition operations needs to be 
developed. 

8.2 3. Input /Output 
The nature of the load on the interconnection network providing communi- 

cation between the PES and between the data flow machine and its disks is 
important. Knowledge of the characteristics of the load are essential to the pro- 
cess of choosing an effective network. In particular, the capability to support 
array transposition and high-bandwidth disk communication was found to  be 
essential. As a point of comparison to support these statements. the disks typi- 
cally used on a Cray X-MP are capable of transferring data at 80 Mbits/second 
and with ten of them connected to a single 1 / 0  processor and operating simul- 
taneously, the system is capable of 500 Mbits or more per second. \Yhile the 
aggregate bandwidth of the routing network is adequate to support a compar- 
able data rate, this requires all 256 1/0 ports of the network versus one port on 
a Cray. Thus to achieve comparable 1/0 bandwidth on the static data flow 
machine would require data set partitioning over many more disks than the 
Cray. For this reason some study participants felt that high 1/0 bandwidth was 
not as readily available as on the Cray. 
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8.2.4. Processing Element Design 
The Linear Systems team expended some effort assessing the quantitative 

requirements for logical operations and floating point operations in their applica- 
tion. They found that overall machine performance was sensitive to the ratio of 
logic to floating point function units in each PE. For the linear systems applica- 
tion a ratio of three to four logic units to one floating point unit is needed for 
best performance. Essentially. a match of the number of various function unit 
types in each PE with the relative numbers of operation types called for by a 
data flow graph is needed so that one type of function unit is not a bottleneck. 
This issue deserves further attention. 

8.2.5. Cost 
Lye estimate that the commercial cost of the machine would be in the range 

of $5-10 million. This allows for labor. software. and marketing costs that would 
be folded in. (See Appen- 
dices.) 

We recommend that a more careful study be made of the costs of building a 
data flow machine and of procuring one commercially. 

Xo software costs are included in these estimates. 

8.3. General 

8.3.1. Scaled-Down Machines 
Two of the seven problems were unable to take full advantage of the full 

power of the machine (1.28 GFLOPS). This appeared to  result from the 
mathematics of the problems themselves rather than from failure to  begin with a 
highly parallel abstract algorithm. On the other hand, five of the seven prob- 
lems consumed all the computing power that was available. 

We conclude that scaled-down versions of the machine (e.g., with 16 PES) 
should be constructed so that domains requiring less power can obtain it at a 
fraction of the cost of the full machine. For example, a 16-PE machine would be 
comparable to a DEC V.4X 11/780 in cost but would be capable of solving prob- 
lems in certain domains that now must use a Cray-class computer. 

8.3.2. Cost Performance Advantage 
It is a well-known rule of thumb for many of the study team members that 

a Cray computer can readily deliver one-fourth of its rated peak speed to  most 
applications; greater speed is often obtainable at the price of increased program- 
ming effort, including coding program sections in assembly language. Such rules 
of thumb do not yet exist for static data flow computers. 

For the problems studied, the cost-performance advantage of the data flow 
machine appears significant. We estimated speed-up factors of roughly 1O:l 
compared to today’s Cray computers. This ratio compares the best speed 
estimated for the data flow machine (1.28 GFLOPS) to  the best speeds seen for 
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applications codes on Cray-class computers (roughly 100 MFLOPS). G' wen a 
data  flow machine price estimate of as low as $5 million, it may have as much as 
a 2:1 price advantage as compared to a Cray-class computer. Thus, we can esti- 
mate an overall gain of up to roughly 2O:l in cost per solution with the static 
data flow machine. 

8.4. Further Work 
We see two areas where further work is required: deeper analysis of the XlIT 

static data flow machine and investigation into developing techniques for 
evaluating new concurrent architectures. Each of these can proceed indepen- 
dently. with knowledge gained in one contributing to  the other. 

In the first category. our workshop leaves gaps in the evaluation-picture of 
the machine we studied. Further work requires the development of a prototype, 
or better, an emulator for the static data flow machine so that complete applica- 
tions can be compiled and executed. This would allow direct cost and perfor- 
mance comparisons to existing supercomputers. An emulator would also allow 
machine "tuning," that is, investigation of the effects of changing machine 
parameters such as array memory size. network structure and speed, and pro- 
cessing element structure. 

The second category, developing and applying general methodologies for 
evaluating new architectures, could provide a sound basis for comparing con- 
current machines as they are proposed an developed. Our study of the static 
data flow machine convinced us that taking real-world problems and implement- 
ing them on the new machine is the best approach and yields the most valuable 
results. We feel that much work could be done here and that our study is a 
good first step. 
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10. Machine Cost Estimate 
The hardware cost of the MIT data flow machine as specified for the study 

will likely be in the rough neighborhood of the cost of one of today’s commer- 
cially available supercomputers. This estimate is based on the following con- 
siderat ions. 

First, the majority component of the machine is memory. The array 
memory consists of 64 Mwords of storage: this is eight times larger than typical 
main memory sizes of current supercomputers. Main memory dominates the cost 
of current supercomputers for machines with medium to large memory 
configurations. Even though the Array Memory uses relatively slow memory, its 
cost will dominate the hardware cost of the data flow machine. For the data 
flow machine to  be as cheap as current supercomputers. its memory must be one 
eighth the cost per word. This cost is possible: significantly less is not. 

Second. while the MIT data flow machine uses inexpensive PES, it uses 
many of them. It is entirely reasonable to assume that 256 data flow machine 
PES will not cost significantly less than the CPU cost of current supercomputers. 
Thus, there is little overall cost advantage with respect to  CPU. 

Finally, peripherals for the data flow machine and a current supercomputer 
will embody the same technology. Also, there is no reason to  suppose that a 
data flow machine will require fewer peripherals than existing machines, given a 
comparable mission. Hence, peripheral costs are likely to  be similar. 

Thus, one can forecast that the MIT data flow machine specified in this 
study, made available commercially, to  cost on the order of $5 - 10 million. 
Total costs including site preparation, software development, and operations 
could easily be $20 - 30 million over a three to  four year lifetime. Site prepara- 
tion should be simpler that for current supercomputers due to  the reduced cool- 
ing requirements of the technology proposed for constructing the data flow 
machine. 



11. Questionnaire and Responses 
Participants in the data flow study were presented with a questionnaire to 

assess their subjective impressions and opinions. The questionnaire is presented 
one question at a time and the individual attributed responses follow. 

Question 1: What background of knowledge about data flow and VAL did you 
have before the Study? 

Briggs (AI): 

Eberhardt (CFD) : 

No background in VAL: basic theoretical acquaintance with da ta  flow in general. 

M y  previous experience with data flow was a naive understanding of the basic 
principles (activity templates. etc.). My background in applicative languages, 
such as V A L .  was non-existent. 

Levin (Chemistry) : 

Merriam (CFD) : 
None. 

I had seen several lectures, talked t o  Jack Dennis personally on one occasion. Also 
I read all the papers provided before the class. 

Partridge (Chem.): 
I had read some of the da t a  flow literature-would describe my background as hav- 
ing a basic understanding of what da t a  flow is and what some of the major con- 
cerns are. 

Patrick (Lin. Sys.) : 
I had read three t o  four papers on d a t a  flow languages and architectures. 

Question 2: Please list the programming languages and computers with which 
you would be comfortable attempting a programming task as part of your regu- 
lar job activities. In a separate list name those languages and computers you 
most often use on the job. 

Briggs (AI): 
Programming languages with which I am comfortable: LISP. Prolog, C, Pascal, 
Rasic, DB Query Languages. Languages most often used. Prolog, C. 

Eberhardt (CFD) : 
FORTRAN is the language that I have most experience in, but occasionally I use 
Pascal. Pascal has too many problems when dealing with large numerical array 
structures so generally I avoid it.  Most of the NASA work I have done has been 
on the VAX. I have not used the Cray X-h4P extensively but I understand it well. 
I anticipate tha t  my future activities will draw heavily on the  Cray resource. If an 
applicative language were available, with a good and trustworthy compiler I think 
I would use it instead of FORTRAN. First, however, 1 / 0  will have t o  be changed so 
tha t  information can be extracted directly from a nested function. In response t o  
the question of what machine I would feel comfortable with, my answer is tha t  I 
am trying t o  understand as many architectures as I can since it is my job t o  try t o  

- s1- 



develop algorithms for them. 

Levin (Chemistry) : 

hlerriam (CFD) : 
(a)  FORTRAN. (b)  FORTRAN; Cray X/MP. CDC Cyber 205, VAX 11/7XX 

Languages: FORTRAN’. \.ectoral‘ Pascal. CFU. Lisp. Basic. Compass (assembly 
language), MRS. Computers: Cray X ’MP-22*. CDC 7600, Cyber 205. Illiac IV.  
VAX 11 ‘7x)iX. IBM 360 67. C’DC 6400. IBM 1800. DEC-20. 

Partridge (Chem.): 
Languages: ( w i t h  an estimated competenc) level--10 know fluently) FORTRAN 

Patrick 

(IO). Pascal ( 5 ) .  assemblers (Cray. V.4X. CDC 7600) ( 4 ) .  At one time I pro- 
grammed in Basic. PL;l. and Algol. Computers: Cray XMP. CDC Cyber 205, 
VAX-11  ‘780 (VMS) .  CDC 7600 (SCOPE).  CDC 835 (NOS). In work related ap- 
plications almost everything has been in FORTRAN. Assemblers only needed for 
coding small kernels and in debugging. 

(Lin. Sys.): 
Most of my programming experience is with FORTRAN. PL. 1. and Pascal running 
on IBM mainframes and PCs. 1 have some experience using the early FORTRAN 
which ran on the Cray 1. More recently I have been involved in the development 
of a parallel programming environment known as PISCES (Parallel Implementa- 
tion of Scientific Computing Environments). My primary role has been to  imple- 
ment some classical numerical linear algebra algorithms using PISCES and to  give 
feedback to  the primary designer of the system (T.W.  P r a t t )  concerning its usabil- 
i ty in scientific computations. PISCES is currently being implemented as an ex- 
tension to  FORTRAN 77. A PISCES program is translated by an interpreter into 
executable FORTRAN 77 code. The interpreter is currently running under UNIX on 
a VAX 750. 

Question 3: What do you like and dislike about the language constructs in 
V A L ?  Why? 

Briggs (AI): 
The only aspect of VAL I can say I “like” is tha t  algorithms which exploit paral- 
lelism are encouraged, I found programming in a low-level language like VAL to  
be extremely awkward, especially in high-level symbol manipulation. My need to  
encode a series of sequential computations resulted in a series of definitions in a 
“let” block which did the work, followed by a trivial ‘(in” component, which sim- 
ply returns the answer. My impression is that  VAL is designed for FORTRAN pro- 
grammers, and the designers did not really have A I  applications in mind. 

Eberhardt (CFD): 
At this point feel I can rave about VAL. I felt tha t  programming could be handled 
in a logical and precise manner which reflects the notation of the mathematical al- 
gorithm. I can understand and appreciate why Bill Ackerman believes he can 
work his miracles with his compiler because the language virtually spits out all of 
the  concurrency in the code. My experience with developing concurrent codes in 
FORTRAN really drives this point home. On the negative side, as a FORTRAN pro- 
grammer I do  not want t o  relearn syntax. I have never liked the semicolon a t  the 
end of each record tha t  free style languages require. Nor do I like having my 
main, outer shell of my program a t  the bottom instead of the top  where it be- 
longs. Those are minor problems tha t  I can get used to.  There is, however, one 
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serious problem tha t  must be corrected for the language to  be at  all useful for de- 
bugging: the 1/0 problem. If YOU want t.0 look a t  a specific variable in a nested 
function within a forall loop, forget it.  You have to  pass the argument out 
through the calling function. requiring global program changes. Also. as pointed 
out by Harry Partridge. a forall loop would have 1 0  Le converted to  a for i ter  
loop if only one instance of t h e  arra) calculation were needed. This must be 
fixed!!!!! 

Levin (Chemistry): 

Merriam (CFD) : 
(1) Seem t o  work. (2) Easy to  learn. 

Many of the features of VAL that  are nice are also features of Vectoral. These in- 
clude: dynamic memory, unlimited identifier name length, structured constructs, 
parallel constructs, strong typing, also (absent from Vectoral) no side effects. It 
lacks: recursion. synonyms (not equivalence), ability t o  make a name synonymous 
with a number in a certain context, ability to  iterate over an enumerated type. 

Part ridge (Chem.) : 
Xly major concerns with \-AL are: 
( a )  not convinced that 1 have to completely (or even largely) give up compatibility 
with FORTRAN to  effectively utilize a da ta  flow machine. The codes are large and 
it would take an enormous effort to translate them t o  a VAL-like language. While 
admittedly I am comfortable with FORTRAN and rather inexperienced with VAL, I 
do not see tha t  VAL offers me an!: significant advantages in describing, coding, or 
debugging my applications. VAL’S major advantage is tha t  it is apparently easier 
t o  write an optimized compiler. 
(b )  It appears that  even minor changes in a code can involve rather major coding 
changes, i.e., codes in VAL are not easy to  modify. Examples are: adding counters 
would change foralls t o  for i t e rs  and debug modifications might involve 
significant changes in calling sequences. 
(c) Memory management capabilities are not conveniently present. These are im- 
portant if the memory requirements exceed the machine size of localization of 
memory references needs to  be (artificially) enforced. 
(d)  I j O  capabilities are nonixistent.  No print, format, namelist, buffer in, buffer 
out ,  direct access files, et cetera. 

Other comments (not in any order). 
( a )  Debugging looks like it would be difficult. Need a sequential mode. 
(b )  1 liked the forall construct but found the for iter construct very painful to  
use. This is particularly true for nested for i te rs .  Labels would help make things 
easier t o  read. 
( c )  Surprisingly. 1 did not find the single definition rule much of a handicap. I‘m 
not sure this is consistent with the comment on the for iter construct but . . . 
(d )  The external statement is s royal pain! 
(e) Syntax. (1) Having to end (some) lines with a “;” is a nuisance. Most lines 
do not continue. (2 )  The symbol used most frequently is the := for define or re- 
placement, yet it requires three keystrokes t o  type. I much prefer the = sign (only 
one keystroke). (3) I don’t particularly like the - and I symbols for not and or. 
( f )  I would like a common statement at least for parameters tha t  will not be 
changed in subsequent function calls. 
(g) VALSYS aborts with the 6rst syntax error and does not produce a useful list- 
ing (formatted). 
(h)  VALSYS kicks you out for certain errors and array input is very cumbersome. 
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Why strong typing on input? 

Patzick (Lin. Sys.): 
The forall construct is excellent for expressing natural  concurrency within a corn- 
putation and a n y  parallel programmine language should have such a construct. I 
found the for-i ter construct awkward to  use Clearly such a construct is needed. 
given the iterative nature of many scientific computations. However. the advan- 
tages of the for-iter over repeat-until or do-while is not clear given the experi- 
ence of this study. 

Question 4: In what ways is better for your application than the 
language(s) you typically use? In what ways is VAL worse? 

Briggs (AI): 
I cannot really say VAL has any advantages over LISP and Prolog for AI pro- 
gramming. 1 cannot imagine writing a significant A I  program in VAL. 

Eberhardt (CFD) : 

Levin (Chemistry) : 

Merriam (CFD) : 

See answer to Question 8; 

No apparent advansage for my problem over FORTRAN. 

VAL is clearly better than FORTRAN but then, so is almost anything. VAL has no 
advantage over Vectoral that  I can see. On the minus side YAL: doesn’t exist, has 
no I .  0 and no disk, suffers from inability to pass arguments several levels deep 
without having them in all intermediate routines, and doesn’t, allow recursion. 

Partridge (Chem.) : 
VAL, or any functional language, is better only if needed t o  obtain supercomputer 
preformance on a machine. 

Patrick (Lin. Sys.): 
(a) A really nice feature is not having to dimension arrays when writing the pro- 
gram and not having to deal with common blocks. I also found the forall eval 
operation to be very helpful. The value oriented nature of the language makes use 
of the language cleaner. (b)  1 found input and output  t o  be awkward. For a 
research language. the run-time information produced by VALSY S was very disap- 
pointing . 

Question 5: Describe the experience you had in changing from your usual pro- 
gramming techniques to those of data flow. 
Briggs (AI): 

I had to go back L U  the algorithm since translation from Prolog t o  VAL would in- 
volve changing the entire structure of the program. As mentioned above, whenev- 
er sequential computation was needed, a series of variable definitions were con- 
structed which implicitly carried out the computation. Parallelisms not exploited 
in the Prolog were made explicit in VAL. The lack of side effects required a 
different approach since the Prolog program outputs  at the bot tom level or the 
leaves of the computation tree, in VAL the  output  had to be done at the end. This 
also I find annoying since the brain obviously does not work this way. The lack of 
a global database required passing databases as arguments, rather than simply ac- 
cessing them as in Prolog. The shortcomings of lack of shared memory are com- 
mented upon in my report. 
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Eberhardt (CFD) : 
The language itself helped change the programming technique since it allows you 
t o  follow a logical approach. However. this benefit could be due t o  lack of experi- 
ence with the language and the fact that  no machine will run compiled VAL. 
Therefore. i t  is difficult to  assess the changes in programming technique because 
many of the changes could be due to lack of knowledge. 

Levin (Chemistry): 
The two outstanding observations were: (1) The "number crunching" implementa- 
tion was very easy, but  ( 2 )  the data handling and 1 i0 control was almost totally 
lacking, or. at least. not yet defined. 

Merriam (CFD) : 

Partridge (Chem.): 
No change appears to be required. 

Programming technique, not surprisingly, did not change - the workshop was 
only two weeks. 

Patrick (Lin. Sys.): 
The application I was considering did not involve converting a large FORTRAN 
program t o  VAL. I really only needed t o  use a few of the constructs so I didn't 
have any real difficult,y in writing the VAL code. My experience with PISCES had 
already taught me to  think "parallel" so t.hat made using VAL less of a problem. 

Question 6: How would you foresee that code development for new applications 
would proceed using VAL versus your usual programming language(s) ? Include 
the effects of the programming environment for each. 
Briggs (AI): 

The A1 community would never accept VAL since t.hey are used to  high level pro- 
gramming environments. If such a language was built on top of VAL, and if 
shared memory was allowed VAL might catch on. 

Eberhardt (CFD) : 
If the compiler can live up to  all its promises then I think tha t  code development 
would be simple. T o  program without memory management headaches or having 
t o  worry about pipelines would be wonderful. It appears tha t  the ideal implemen- 
tation of da t a  flow and VAL would allow a relatively naive approach t o  program- 
ming. In this st,udy we worked out in more detail how the machine would be 
"filled" but I think in practice we would not have to. 

Levin (Chemistry): 
Coding of arithmetic operations is much easier in VAL, but there is a lot missing 
with regard t o  da ta  manipulation and also some very optimistic assumptions 
about what the compiler can do. 

Merriam (CFD) : 
Assuming tha t  the missing constructs are not required, VAL would be about even 
with Vectoral. There would of course be a large training and code conversion ex- 
pense. 

Partridge (Chem.) : 
The emphasis on vectorizing inner loops would be relaxed. This would eliminate 
some of the contortions one goes through. By the same token however, similar 
rearrangements might be needed to  localize memory references. 
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Patrick (Lin. Sys.): 
I feel I would need t o  do  a really large application program and get comfortable 
with VAL before 1 could make a reasonable comparison. Given my limited experi- 
ence with VAL. my impression is that VAL would be a clean. nice language to use 
for a large code. 1 goi no real experience w - i t h  1 '0 in \ 'AL but 1 have the irnpres- 
sion i t  may be a problem. 

Question 7: Do you think the data flow techniques present,ed and practiced in 
this study are or will become useful for your applications? Are they more 
"natural" for your problem domain than conventional concepts? 

Briggs (AI):  
The basic concept of parallelism is more natural  than pure sequentialism. I am 
not  convinced that  da ta  flow models are more natural however. Certainly, shared 
memory is more natural than lack thereof: and while some computations in the 
brain are  "data-driven"? not all are. 

Eberhardt (CFD) : 
There is no doubt t h a t  the da ta  flow concepts are more natural  t o  my CFD appli- 
cations. The architecture allows matrix elements t o  be computed concurrently as 
though defining the matrix a t  once, instead of defining the elements sequentially. 
I think that if the machine works, there will be a large number of CFD users (ex- 
cept the conservative ones). 

Levin (Chemistry) : 

Merriam (CFD): 
NO NO. 

Partridge (Chem.) : 

Looks o k .  but no obvious advantages noted 

1 think there is sufficient parallelism present in our application that  if such a 
machine is built that  we will be able to use i t .  

Patrick (Lin. Sys.): 

Question 8: Does data flow allow or encourage you to  consider your approach 
to  problem solving in your applications area in a new light? If so, did this lead 
to  new ways of thinking about your application? 
Briggs (AI): 

See answer to the question immediately preceding this one 

Data  flow did encourage me to  think of A I  problems in a new light, but it was the 
concept of parallelism that  was the crucial difference in my thinking. Other as- 
pects of d a t a  flow did not seem applicable i o  the domain of AI.  

Eberhardt (CFD) : 
The  primary insight I got into my algorithm from the study was a method for 
performing Gaussian Elimination across an  array of processors. The  processors 
d o  not necessarily have to be d a t a  flow either. With d a t a  flow, however, I feel 
tha t  less will be required of me in terms of extracting parallelism. 

Levin (Chemistry): 

Merriam (CFD) : 
Not particularly . 

No. No more than  any extended look at an  algorithm. 
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Partridge (Chem.): 
No, but the algorithm (or my implementation) will probably need to be modified 
t o  be efficiently mapped. 

Patrick (Lin. Sys.): 
.\gain experience gained from this study 1s limited However. 1 felt. when thinking 
about the VAL implementation of my problem solution. the need to  write code 
that could be pipelined. Also 1 was concerned as to whether my code had been 
written so that computation and communication could be overlapped. Without. 
this my code will perform very poorly on the static da ta  flow machine. 1 am in- 
terested t o  know whether other participants felt the  same pressures concerning 
pipelining and communication and computation overlap when writing their code. 

Question 9: What percent of the way did you get toward preparing you appli- 
cation for data flow during the study? 

Briggs (-41) : 

Eberhardt (CFD): 

The program was completely rewritten. 

M y  CSCM code in one-dimension is completed except the 1 , ' 0  and initialization. I 
intend t o  complete it and test it on the interpreter if possible. 1 would also like to  
see it run completely ( to  convergence) on a prototype machine, if possible. If the 
prototype test is successful. I would be willing go program a two-dimensional or 
three-dimensional problem for future study. 

Levin (Chemistry) : 
I finished a small but computationally intensive module that  is 10 percent of the 
total  code. 

Merriam (CFD): 
The jury isn't in yet but I would say about 80% 

Partridge (Chem.) : 
? 

Patrick (Lin. Sys.): 
As mentioned earlier, my code was relatively simple so I was able to complete the 
code. 

Question 10: What do you think are the strong and weak points of the static 
data flow architecture? 

Briggs (AI): 

Eberhardt (CFD) : 

The basic weakness is lack of shared memory 

The strong points of the static architecture is tha t  less network routing is needed. 
However, there is a problem if you have a reasonably long and wide pipeline. You 
may have t o  spread the pipe over several processors since each processors instruc- 
tion memory is not large enough. Also, in my application, certain functions are 
executed at different times. In particular, there is the  block tridiagonal fill rou- 
tines and the block tridiagonal inversion routines. Both of these blocks of code 
must reside in the processors instruction memory even though they never need to 
overlap in some applications. It may make sense t o  allow them to be allocated t o  
processors dynamically. 
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Levin (Chemistry): 
Strong: Easy to get massive parallelism. Weak: Doesn’t work too well for short 
pipelines. Also, may have trouble with routing network for problems tha t  require 
lots of data  to be sent between PES. 

Merriam (CFD) :  
T h e  strong points are as follows: ( a )  betI.er resolution of memory contention prob- 
lems in  multiprocessing: ( b )  potential for better performance per uni t  cost through 
usc of loher technology chips: ( c )  better Lreatment of exceptions (boundary condi- 
tions) and indirect addressing; ( d )  hardware support for structured da ta  types: 
and ( e )  potential for better scaling of performance to machine complexity. The 
weak points are: ( a )  only large problems can run fast and (b )  a very difficult com- 
piler problem. Further difficulties in the suggested hardware implementation are; 
( a )  a severe bottleneck in the Array Memory bandwidth; (b) a difficulty in choos- 
ing the size of the instruction buffer (too small! PE goes idle; too big, a crucial in- 
struction isn’t done. another PE goes idle); (c)  no I/O; (d)  one user; and (e) a 
difficult network problem. 

Partridge (Chem.) : 
The strongest point is that  it allows one t o  exploit enormous degrees of parallel- 
ism. This can be done even when the code would not easily vectorize. The weak 
points are: VAL, static code allocation to processors, and 110. 

Patrick (Lin. Sys.) : 
1 want t o  delay a careful answer t o  this question until 1 finish my analysis of how 
my code maps onto the static d a t a  flow machine. The  close relationship between 
the d a t a  tlow graph for a computation and the  architecture of the machine is very 
appealing. A concern is whether the routing network is really a problem or not 
(Le., is it a bottleneck). Also the idea that  every instruction must receive an ack- 
nowledge signal before it can fire again is bothersome. This seems like synchroni- 
zation after every operation. My experience to da te  is t h a t  the cost of synchroni- 
zation is what most often makes parallel computation not cost effective. More im- 
portantly, it appears tha t  the key to success is pipelining and the ability of the 
VAL compiler t o  translate the code so that  d a t a  can be pipelined through the in- 
structions in the PES. An import.ant question is what is the  overhead associated 
with this translation and what is the nature of the computations which allow this 
cost G O  be affordable. 1 feel tha t  this question should be carefully considered. One 
final issue is the amount of storage required for multiple copies of the instructions 
and data  required to  make opt.ima1 use of the hardware. I still do  n o t  clearly 
undersband the ramifications of the idea that  arrays are treated as values and 
when multiple copies of arrays need to be stored. 
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